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Chapter 1

Review

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Give a summary of the ideas you learned in 112, including graphing, deriva-
tives (product, quotient, power, chain, trig, exponential, and logarithm
rules), and integration (u-sub and integration by parts).

2. Compute the differential dy of a function and use it to approximate the
change in a function.

3. Explain how to perform matrix multiplication and compute determinants
of square matrices.

4. Illustrate how to solve systems of linear equations, including how to express
a solution parametrically (in terms of t) when there are infinitely solutions.

5. Extend the idea of differentials to approximate functions using parabolas,
cubics, and polynomials of any degree.

You’ll have a chance to teach your examples to your peers prior to the exam.

1.1 Review of First Semester Calculus

1.1.1 Graphing

We’ll need to know how to graph by hand some basic functions. If you have
not spent much time graphing functions by hand before this class, then you
should spend some time graphing the following functions by hand. When we
start drawing functions in 3D, we’ll have to piece together infinitely many 2D
graphs. Knowing the basic shape of graphs will help us do this.

Problem 1.1 Provide a rough sketch of the following functions, showing
their basic shapes:

x2, x3, x4,
1

x
, sinx, cosx, tanx, secx, arctanx, ex, lnx.

Then use a computer algebra system, such as Wolfram Alpha, to verify your
work. I suggest Wolfram Alpha, because it is now built into Mathematica 8.0.
If you can learn to use Wolfram Alpha, you will be able to use Mathematica.

1

http://http://www.wolframalpha.com/
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1.1.2 Derivatives

In first semester calculus, one of the things you focused on was learning to
compute derivatives. You’ll need to know the derivatives of basic functions (found
on the end cover of almost every calculus textbook). Computing derivatives
accurately and rapidly will make learning calculus in high dimensions easier.
The following rules are crucial.

• Power rule (xn)′ = nxn−1

• Sum and difference rule (f ± g) = f ′ ± g′

• Product (fg)′ = f ′g + fg′ and quotient rule

(
f

g

)′
=
f ′g − fg′

g2

• Chain rule (arguably the most important) (f ◦ g)′ = f ′(g(x)) · g′(x)

Problem 1.2 Compute the derivative of esec x cos(tan(x)+ln(x2+4)). Show
each step in your computation, making sure to show what rules you used.

Problem 1.3 If y(p) =
ep

3

cot(4p+ 7)

tan−1(p4)
find dy/dp. Again, show each step

in your computation, making sure to show what rules you used.

The following problem will help you review some of your trigonometry, inverse
functions, as well as implicit differentiation.

Problem 1.4 Use implicit differentiation to explain why the derivative of

y = arcsinx is y′ =
1√

1− x2
. [Rewrite y = arcsinx as x = sin y, differentiate

both sides, solve for y′, and then write the answer in terms of x].

1.1.3 Integrals

Each derivative rule from the front cover of your calculus text is also an integra-
tion rule. In addition to these basic rules, we’ll need to know three integration
techniques. They are (1) u-substitution, (2) integration-by-parts, and (3) inte-
gration by using software. There are many other integration techniques, but
we will not focus on them. If you are trying to compute an integral to get
a number while on the job, then software will almost always be the tool you
use. As we develop new ideas in this and future classes (in engineering, physics,
statistics, math), you’ll find that u-substitution and integrations-by-parts show
up so frequently that knowing when and how to apply them becomes crucial.

Problem 1.5 Compute

∫
x
√
x2 + 4dx.

Problem 1.6 Compute

∫
x sin 2xdx.

Problem 1.7 Compute

∫
arctanxdx.

Problem 1.8 Compute

∫
x2e3xdx.
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1.2 Differentials

The derivative of a function gives us the slope of a tangent line to that function.
We can use this tangent line to estimate how much the output (y values) will

change if we change the input (x-value). If we rewrite the notation
dy

dx
= f ′ in

the form dy = f ′dx, then we can read this as “A small change in y (called dy)
equals the derivative (f ′) times a small change in x (called dx).”

Definition 1.A. We call dx the differential of x. If f is a function of x, then
the differential of f is df = f ′(x)dx. Since we often write y = f(x), we’ll
interchangeably use dy and df to represent the differential of f .

We will often refer to the differential notation dy = f ′dx as “a change in the
output y equals the derivative times a change in the input x.”

Problem 1.9 If f(x) = x2 ln(3x+ 2) and g(t) = e2t tan(t2) then compute
df and dg.

Most of higher dimensional calculus can quickly be developed from differential
notation. Once we have the language of vectors and matrices at our command, we
will develop calculus in higher dimensions by writing d~y = Df(~x)d~x. Variables
will become vectors, and the derivative will become a matrix.

This problem will help you see how the notion of differentials is used to
develop equations of tangent lines. We’ll use this same idea to develop tangent
planes to surfaces in 3D and more.

Problem 1.10 Consider the function y = f(x) = x2. This problem has The linearization of a function is
just an equation of the tangent
line where you solve for y.

multiple steps, but each is fairly short.

1. Find the differential of y with respect to x.

2. Give an equation of the tangent line to f(x) at x = 3.

3. Draw a graph of f(x) and the tangent line on the same axes. Place a dot
at the point (3, 9) and label it on your graph. Place another dot on the
tangent line up and to the right of (3,9). Label the point (x, y), as it will
represent any point on the tangent line.

4. Using the two points (3, 9) and (x, y), compute the slope of the line
connecting these two points. Your answer should involve x and y. What is
the rise (i.e, the change in y called dy)? What is the run (i.e, the change
in x called dx)?

5. We already know the slope of the tangent line is the derivative f ′(3) = 6.
We also know the slope from the previous part. These two must be equal.
Use this fact to give an equation of the tangent line to f(x) at x = 3.

Problem 1.11 The manufacturer of a spherical storage tank needs to create
a tank with a radius of 3 m. Recall that the volume of a sphere is V (r) = 4

3πr
3.

No manufacturing process is perfect, so the resulting sphere will have a radius
of 3 m, plus or minus some small amount dr. The actual radius will be 3 + dr.
Find the differential dV . Then use differentials to estimate the change in the
volume of the sphere if the actual radius is 3.02 m instead of the planned 3 m.
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Problem 1.12 A forest ranger needs to estimate the height of a tree. The
ranger stands 50 feet from the base of tree and measures the angle of elevation
to the top of the tree to be about 60◦. If this angle of 60◦ is correct, then what
is the height of the tree? If the ranger’s angle measurement could be off by
as much as 5◦, then how much could his estimate of the height be off? Use
differentials to give an answer.

1.3 Matrices

We will soon discover that matrices represent derivatives in high dimensions.
When you use matrices to represent derivatives, the chain rule is precisely
matrix multiplication. For now, we just need to become comfortable with matrix
multiplication.

We perform matrix multiplication “row by column”. Wikipedia has an
excellent visual illustration of how to do this. See Wikipedia for an explanation. The links will open your browser

and take you to the web.See texample.net for a visualization of the idea.

Problem 1.13 Compute the following matrix products. For extra practice, make up two
small matrices and multiply them.
Use Sage or Wolfram Alpha to see
if you are correct (click the links
to see how to do matrix
multiplication in each system).

•
[
3 2 1

] −1
2
0


•
[
1 2
3 4

] [
5 0
6 1

]

Problem 1.14 Compute the product

[
3 2 1
0 1 −4

]−1 3 0
2 −1 0
0 1 2

.

1.3.1 Determinants

Determinants measure area, volume, length, and higher dimensional versions of
these ideas. Determinants will appear as we study cross products and when we
get to the high dimensional version of u-substitution.

Associated with every square matrix is a number, called the determinant,
which is related to length, area, and volume, and we use the determinant to
generalize volume to higher dimensions. Determinants are only defined for
square matrices.

Definition 1.B. The determinant of a 2× 2 matrix is the number We use vertical bars next to a
matrix to state we want the
determinant, so detA = |A|.

det

[
a b
c d

]
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

The determinant of a 3× 3 matrix is the number Notice the negative sign on the
middle term of the 3× 3
determinant. Also, notice that we
had to compute three
determinants of 2 by 2 matrices in
order to find the determinant of a
3 by 3.

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a det

∣∣∣∣e f
h i

∣∣∣∣− bdet

∣∣∣∣d f
g i

∣∣∣∣+ cdet

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge).

http://en.wikipedia.org/wiki/Matrix_multiplication
http://www.texample.net/tikz/examples/matrix-multiplication/
https://sagecell.sagemath.org/?z=eJxztM1NLCnKrNCIjjbUMdYxiY3V5HJCiJnrGMXqKICkQJSukY4BSIGjlhMA16EPQw
http://www.wolframalpha.com/input/?i=%281%2C3%2C4%29+*%28%287%2C2%29%2C%281%2C3%29%2C%28-2%2C0%29%29
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Problem 1.15 Compute

∣∣∣∣1 2
3 4

∣∣∣∣ and

∣∣∣∣∣∣
1 2 0
−1 3 4
2 −3 1

∣∣∣∣∣∣. For extra practice, create your
own square matrix (2 by 2 or 3 by
3) and compute the determinant
by hand. Then use Wolfram
Alpha to check your work. Do this
until you feel comfortable taking
determinants.

What good is the determinant? The determinant was discovered as a result of
trying to find the area of a parallelogram and the volume of the three dimensional
version of a parallelogram (called a parallelepiped) in space. If we had a full
semester to spend on linear algebra, we could eventually prove the following
facts that I will just present here with a few examples.

Consider the 2 by 2 matrix

[
3 1
0 2

]
whose determinant is 3 ·2−0 ·1 = 6. Draw

the column vectors

[
3
0

]
and

[
1
2

]
with their base at the origin (see figure 1.1).

These two vectors give the edges of a parallelogram whose area is the determinant
6. If I swap the order of the two vectors in the matrix, then the determinant of[
1 3
2 0

]
is −6. The reason for the difference is that the determinant not only

keeps track of area, but also order. Starting at the first vector, if you can turn
counterclockwise through an angle smaller than 180◦ to obtain the second vector,
then the determinant is positive. If you have to turn clockwise instead, then the
determinant is negative. This is often termed “the right-hand rule,” as rotating
the fingers of your right hand from the first vector to the second vector will
cause your thumb to point up precisely when the determinant is positive.

+ −

Area = 6

∣∣∣∣3 1
0 2

∣∣∣∣ = 6 and

∣∣∣∣1 3
2 0

∣∣∣∣ = −6

Figure 1.1: The determinant gives both area and direction. A counter clockwise
rotation from column 1 to column 2 gives a positive determinant.

For a 3 by 3 matrix, the columns give the edges of a three dimensional
parallelepiped and the determinant produces the volume of this object. The sign
of the determinant is related to orientation. If you can use your right hand and
place your index finger on the first vector, middle finger on the second vector,
and thumb on the third vector, then the determinant is positive. For example,

consider the matrix A =

1
0
0

0
2
0

0
0
3

. Starting from the origin, each column

represents an edge of the rectangular box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3
with volume (and determinant) V = lwh = (1)(2)(3) = 6. The sign of the
determinant is positive because if you place your index finger pointing in the
direction (1,0,0) and your middle finger in the direction (0,2,0), then your thumb
points upwards in the direction (0,0,3). If you interchange two of the columns,

for example B =

0
2
0

1
0
0

0
0
3

, then the volume doesn’t change since the shape is

still the same. However, the sign of the determinant is negative because if you
point your index finger in the direction (0,2,0) and your middle finger in the
direction (1,0,0), then your thumb points down in the direction (0,0,-3). If you
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repeat this with your left hand instead of right hand, then your thumb points
up.

Problem 1.16 • Use determinants to find the area of the triangle with
vertices (0, 0), (−2, 5), and (3, 4).

• What would you change if you wanted to find the area of the triangle with
vertices (−3, 1), (−2, 5), and (3, 4)? Find this area.

1.4 Solving Systems of equations

Problem 1.17 Solve the following linear systems of equations. For additional practice, make up
your own systems of equations.
Use Wolfram Alpha to check your
work.•

{
x+ y = 3

2x− y = 4

•

{
−x+ 4y = 8

3x− 12y = 2

Problem 1.18 Find all solutions to the linear system

{
x+ y + z = 3

2x− y = 4
. This link will show you how to

specify which variable is t when
using Wolfram Alpha.Since there are more variables than equations, this suggests there is probably

not just one solution, but perhaps infinitely many. One common way to deal
with solving such a system is to let one variable equal t, and then solve for the
other variables in terms of t. Do this three different ways.

• If you let x = t, what are y and z. Write your solution in the form (x, y, z)
where you replace x, y, and z with what they are in terms of t.

• If you let y = t, what are x and z (in terms of t).

• If you let z = t, what are x and y.

1.5 Higher Order Approximations

When you ask a calculator to tell you what e.1 means, your calculator uses an
extension of differentials to give you an approximation. The calculator only
uses polynomials (multiplication and addition) to give you an answer. This
same process is used to evaluate any function that is not a polynomial (so trig
functions, square roots, inverse trig functions, logarithms, etc.) The key idea
needed to approximate functions is illustrated by the next problem.

Problem 1.19 Let f(x) = ex. You should find that your work on each step
can be reused to do the next step.

• Find a first degree polynomial P1(x) = a+ bx so that P1(0) = f(0) and
P ′1(0) = f ′(0). In other words, give me a line that passes through the
same point and has the same slope as f(x) = ex does at x = 0. Set up a
system of equations and then find the unknowns a and b. The next two
are very similar.

http://www.wolframalpha.com/input/?i=Solve+x%2B2y%3D3+and+4x-y%2Bz%3D7+and+x%3Dt
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• Find a second degree polynomial P2(x) = a+bx+cx2 so that P2(0) = f(0),
P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0). In other words, give me a parabola
that passes through the same point, has the same slope, and has the same
concavity as f(x) = ex does at x = 0.

• Find a third degree polynomial P3(x) = a + bx + cx2 + dx3 so that
P3(0) = f(0), P ′3(0) = f ′(0), P ′′3 (0) = f ′′(0), and P ′′′3 (0) = f ′′′(0). In
other words, give me a cubic that passes through the same point, has the
same slope, the same concavity, and the same third derivative as f(x) = ex

does at x = 0.

• Now compute e.1 with a calculator. Then compute P1(.1), P2(.1), and
P3(.1). How accurate are the line, parabola, and cubic in approximating
e.1?

Problem 1.20 Now let f(x) = sinx. Find a 7th degree polynomial so The polynomial you are creating is
often called a Taylor polynomial.
(I’m giving you the name so that
you can search online for more
information if you are interested.)

that the function and the polynomial have the same value and same first seven
derivatives when evaluated at x = 0. Evaluate the polynomial at x = 0.3. How
close is this value to your calculator’s estimate of sin(0.3)? You may find it
valuable to use the notation

P (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ a7x
7.

The previous two problems involved finding polynomial approximations to
the function at x = 0. The next problem shows how to move this to any other
point, such as x = 1.

Problem 1.21 Let f(x) = ex.

• Find a second degree polynomial

T (x) = a+ bx+ cx2

so that T (1) = f(1), T ′(1) = f ′(1), and T ′′(1) = f ′′(1). In other words,
give me a parabola that passes through the same point, has the same
slope, and the same concavity as f(x) = ex does at x = 1.

• Find a second degree polynomial written in the form

S(x) = a+ b(x− 1) + c(x− 1)2

so that S(1) = f(1), S′(1) = f ′(1), and S′′(1) = f ′′(1). In other words, Notice that we just replaced x
with x− 1. This centers, or shifts,
the approximation to be at x = 1.
The first part will be much
simpler now when you let x = 1.

find a quadratric that passes through the same point, has the same slope,
and the same concavity as f(x) = ex does at x = 1.

• Find a third degree polynomial written in the form

P (x) = a+ b(x− 1) + c(x− 1)2 + d(x− 1)3

so that P (1) = f(1), P ′(1) = f ′(1), P ′′(1) = f ′′(1), and P ′′′(1) = f ′′′(1).
In other words, give me a cubic that passes through the same point, has
the same slope, the same concavity, and the same third derivative as
f(x) = ex does at x = 1.



CHAPTER 1. REVIEW 8

Example 1.C. This example refers back to problem 1.11. We wanted a spherical
tank of radius 3m, but due to manufacturing error the radius was slightly off.
Let’s now illustrate how we can use polynomials to give a first, second, and
third order approximation of the volume if the radius is 3.02m instead of 3m.

We start with V = 4
3πr

3 and then compute the derivatives

V ′ = 4πr2, V ′′ = 8πr, and V ′′′ = 8π.

Because we are approximating the increase in volume from r = 3 to something
new, we’ll create our polynomial approximations centered at r = 3. We’ll
consider the polynomial

P (r) = a0 + a1(r − 3) + a2(r − 3)2 + a3(r − 3)3,

whose derivatives are

P ′ = a1 + 2a2(r − 3) + 3a3(r − 3)2, P ′′ = 2a2 + 6a3(r − 3), P ′′′ = 6a3.

So that the derivatives of the volume function match the derivatives of the
polynomial (at r = 3), we need to satisfy the equations in the table below.

k Value of V at the kth derivative Value of P at the kth derivative Equation

0 V (3) = 4
3π(3)3 = 36π P (3) = a0 a0 = 36π

1 V ′(3) = 4π(3)2 = 36π P ′(3) = a1 a1 = 36π

2 V ′′(3) = 8π(3) = 24π P ′′(3) = 2a2 2a2 = 24π

3 V ′′′(3) = 8π P ′′′(3) = 6a3 6a3 = 8π

This tells us that the third order polynomial is

P (r) = a0+a1(r−3)+a2(r−3)2+a3(r−3)3 = 36π+36π(r−3)+12π(r−3)2+
4

3
π(r−3)3.

We wanted to approximate the volume if r = 3.2, so our change in r is dr =
3.2− 3 = 0.2. We can rewrite our polynomial as

P (r) = 36π + 36π(dr) + 12π(dr)2 +
4

3
π(dr)3.

We are now prepared to approximate the volume using a first, second, and third
order approximation.

1. A first order approximation yields P = 36π + 36π · 0.02 = 36.72π. The
volume increased by 0.72π m3.

2. A second order approximation yields

P = 36π + 36π · 0.02 + 12π(0.02)2 = 36.7248π.

3. A third order approximation yields

P = 36π + 36π · 0.02 + 12π(0.02)2 +
4

3
π(0.02)3 = 36.7248106̄π.

With each approximation, we add on a little more volume to get closer to the
actual volume of a sphere with radius r = 3.02. The actual volume of a sphere
involves a cubic function, so when we approximate the volume with a cubic, we
should get an exact approximation (and V (3.02) = 4

3π(3.02)3 = (36.7248106̄)π.)
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We’ll end this section with a problem to practice the example above.

Problem 1.22 Suppose you are constructing a cube whose side length should
be s = 2 units. The manufacturing process is not exact, but instead creates a
cube with side lengths s = 2 + ds units. (You should assume that all sides are
still the same, so any error on one side is replicated on all. We have to assume
this for now, but before the semester ends we’ll be able to do this with high
dimensional calculus.)

Suppose that the machine creates a cube with side length 2.3 units instead Ask me in class to draw a 3D
graph which illustrates the volume
added on by each successive
approximation. As a challenge,
try to construct this graph
yourself first. If you have it before
I put it up in class, let me know
and I’ll let you share what you
have discovered with the class.

of 2 units. Note that the volume of the cube is V = s3. Use a first, second,
and third order approximation to estimate the increase in volume caused by
the .3 increase in side length. Then compute the actual increase in volume
V (2.3)− V (2).



Chapter 2

Vectors

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, multiply (scalar, dot product, cross product) vectors. Be
able to illustrate each operation geometrically.

3. Use vector products to find angles, length, area, projections, and work.

4. Use vectors to give equations of lines and planes, and be able to draw lines
and planes in 3D.

You’ll have a chance to teach your examples to your peers prior to the exam.

2.1 Vectors and Lines

Learning to work with vectors will be key tool we need for our work in high
dimensions. Let’s start with some problems related to finding distance in 3D,
drawing in 3D, and then we’ll be ready to work with vectors.

Problem 2.1 To find the distance between two points (x1, y1) and (x2, y2) in
the plane, we create a triangle connecting the two points. The base of the triangle
has length ∆x = (x2 − x1) and the vertical side has length ∆y = (y2 − y1).
The Pythagorean theorem gives us the distance between the two points as√

∆x2 + ∆y2 =
√

(x2 − x1)2 + (y2 − y1)2.
Show that the distance between two points (x1, y1, z1) and (x2, y2, z2) in

3-dimensions is
√

∆x2 + ∆y2 + ∆z2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Problem 2.2 Find the distance between the two points P = (2, 3,−4) and
Q = (0,−1, 1). Then find an equation of the sphere passing though point Q
whose center is at P .

Problem 2.3 For each of the following, construct a rough sketch of the set
of points in space (3D) satisfying:

1. 2 ≤ z ≤ 5

10
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2. x = 2, y = 3

3. x2 + y2 + z2 = 25

Definition 2.A. A vector is a magnitude in a certain direction. If P and Q
are points, then the vector ~PQ is the directed line segment from P to Q. This
definition holds in 1D, 2D, 3D, and beyond. If V = (v1, v2, v3) is a point in
space, then to talk about the vector ~v from the origin O to V we’ll use any of
the following notations:

~v = ~OV = 〈v1, v2, v3〉 = v1i + v2j + v3k = (v1, v2, v3) =

v1v2
v3

 .

The entries of the vector are called the x, y, and z components of the vector.

Note that (v1, v2, v3) could refer to either the point V or the vector ~v. The
context of the problem we are working on will help us know if we are dealing
with a point or a vector.

Definition 2.B. Let R represent the set real numbers. Real numbers are
actually 1D vectors. Let R2 represent the set of vectors (x1, x2) in the plane.
Let R3 represent the set of vectors (x1, x2, x3) in space. There’s no reason to
stop at 3, so let Rn represent the set of vectors (x1, x2, . . . , xn) in n dimensions.

In first semester calculus and before, most of our work dealt with problem
in R and R2. Most of our work now will involve problems in R2 and R3. We’ve
got to learn to visualize in R3.

Definition 2.C. The magnitude, or length, or norm of a vector ~v = 〈v1, v2, v3〉
is |~v| =

√
v21 + v22 + v23 . It is just the distance from the point (v1, v2, v3) to the

origin. A unit vector is a vector whose length is one unit.
The standard unit vectors are i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

Note that in 1D, the length of the vector 〈−2〉 is simply |−2| =
√

(−2)2 = 2,
the distance to 0. Our use of the absolute value symbols is appropriate, as it
generalizes the concept of absolute value (distance to zero) to all dimensions.

Definition 2.D. Suppose ~x = 〈x1, x2, x3〉 and ~y = 〈y1, y2, y3〉 are two vectors in
3D, and c is a real number. We define vector addition and scalar multiplication
as follows:

• Vector addition: ~x+ ~y = (x1 + y1, x2 + y2, x3 + y3) (add component-wise).

• Scalar multiplication: c~x = (cx1, cx2, cx3).

Problem 2.4 Consider the vectors ~u = (1, 2) and ~v = 〈3, 1〉. Draw ~u, ~v,
~u+ ~v, and ~u− ~v with their tail placed at the origin. Then draw ~v with its tail
at the head of ~u.

Problem 2.5 Consider the vector ~v = (3,−1). Draw ~v, −~v, and 3~v. Suppose
a donkey travels along the path given by (x, y) = ~vt = (3t,−t), where t represents
time. Draw the path followed by the donkey. Where is the donkey at time
t = 0, 1, 2? Put markers on your graph to show the donkey’s location. Then
determine how fast the donkey is traveling.
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In the previous problem you encountered (x, y) = (3t,−t). This is an
example of a function where the input is t and the output is a vector (x, y). For
each input t, you get a single vector output (x, y). Such a function is called a
parametrization of the donkey’s path. Because the output is a vector, we call
the function a vector-valued function. Often, we’ll use the variable ~r to represent
the radial vector (x, y), or (x, y, z) in 3D. So we could rewrite the position of the
donkey as ~r(t) = (3,−1)t. We use ~r instead of r to remind us that the output is
a vector.

Problem 2.6 Suppose a horse races down a path given by the vector-
valued function ~r(t) = (1, 2)t+ (3, 4). (Remember this is the same as writing
(x, y) = (1, 2)t+ (3, 4) or similarly (x, y) = (1t+ 3, 2t+ 4).) Where is the horse
at time t = 0, 1, 2? Put markers on your graph to show the horse’s location.
Draw the path followed by the horse. Give a unit vector that tells the horse’s
direction. Then determine how fast the horse is traveling.

Problem 2.7 Consider the two points P = (1, 2, 3) and Q = (2,−1, 0).

Write the vector ~PQ in component form (a, b, c). Find the length of vector ~PQ.

Then find a unit vector in the same direction as ~PQ. Finally, find a vector of
length 7 units that points in the same direction as ~PQ.

Problem 2.8 A raccoon is sitting at point P = (0, 2, 3). It starts to climb
in the direction ~v = 〈1,−1, 2〉. Write a vector equation (x, y, z) = (?, ?, ?) for the
line that passes through the point P and is parallel to ~v. [Hint, study problem
2.6, and base your work off of what you saw there. It’s almost identical.]

Then generalize your work to give an equation of the line that passes through
the point P = (x1, y1, z1) and is parallel to the vector ~v = (v1, v2, v3).

Make sure you ask me in class to show you how to connect the equation
developed above to what you have been doing since middle school. If you can
remember y = mx+ b, then you can quickly remember the equation of a line. If
I don’t show you in class, make sure you ask me (or feel free to come by early
and ask before class).

Problem 2.9 Let P = (3, 1) and Q = (−1, 4).

• Write a vector equation ~r(t) = (x, y) for (i.e, give a parametrization of)
the line that passes through P and Q, with ~r(0) = P and ~r(1) = Q.

• Write a vector equation for the line that passes through P and Q, with
~r(0) = P but whose speed is twice the speed of the first line.

• Write a vector equation for the line that passes through P and Q, with
~r(0) = P but whose speed is one unit per second.



CHAPTER 2. VECTORS 13

2.2 The Dot Product

Now that we’ve learned how to add and subtract vectors, stretch them by scalars,
and use them to find lines, it’s time to introduce a way of multiplying vectors
called the dot product. We’ll use the dot product to help us find find angles.
First, we need to recall the law of cosines.

Theorem (The Law of Cosines). Consider a triangle with side lengths a, b,
and c. Let θ be the angle between the sides of length a and b. Then the law of
cosines states that

c2 = a2 + b2 − 2ab cos θ.

If θ = 90◦, then cos θ = 0 and this reduces to the Pythagorean theorem.

Definition 2.E: The Dot Product. If ~u = (u1, u2, u3) and ~v = (v1, v2, v3)
are vectors in R3, then we define the dot product of these two vectors to be

~u · ~v = u1v1 + u2v2 + u3v3.

A similar definition holds for vectors in Rn, where ~u·~v = u1v1+u2v2+· · ·+unvn.
You just multiply corresponding components together and then add. It is the
same process used in matrix multiplication.

Problem 2.10 If ~u = (u1, u2, u3) and ~v = (v1, v2, v3) are vectors in R3

(which is often written ~u,~v ∈ R3), then show that

|~u− ~v|2 = |~u|2 − 2~u · ~v + |~v|2.

Problem 2.11 Sketch in R2 the vectors 〈1, 2〉 and 〈3, 5〉. Use the law of
cosines to find the angle between the vectors.

Problem 2.12 Let ~u,~v ∈ R3. Let θ be the angle between ~u and ~v.

1. Use the law of cosines to explain why |~u− ~v|2 = |~u|2 + |~v|2 − 2|~u||~v| cos θ.

2. Use the above together with problem 2.10 to explain why

~u · ~v = |~u||~v| cos θ.

Problem 2.13 Sketch in R3 the vectors 〈1, 2, 3〉 and 〈−2, 1, 0〉. Use the
law of cosines to find the angle between the vectors. Then use the formula
~u · ~v = |~u||~v| cos θ to find the angle between them. Which was easier?

Definition 2.F. We say that the vectors ~u and ~v are orthogonal if ~u · ~v = 0.

Problem 2.14 Find two vectors orthogonal to (1, 2). Then find 4 vectors
orthogonal to (3, 2, 1).

Problem 2.15 Mark each statement true or false. Explain. You can assume
that ~u,~v, ~w ∈ R3 and that c ∈ R.



CHAPTER 2. VECTORS 14

1. ~u · ~v = ~v · ~u.

2. ~u · (~v · ~w) = (~u · ~v) · ~w.

3. c(~u · ~v) = (c~u) · ~v = ~u · (c~v).

4. ~u+ (~v · ~w) = (~u+ ~v) · (~u+ ~w).

5. ~u · (~v + ~w) = (~u · ~v) + (~u · ~w).

6. ~u · ~u = |~u|2.

Problem 2.16 Show that if two nonzero vectors ~u and ~v are orthogonal,
then the angle between them is 90◦. Then show that if the angle between them
is 90◦, then the vectors are orthogonal.

The dot product provides a really easy way to find when two vectors meet
at a right angle. The dot product is precisely zero when this happens.

2.2.1 Projections and Work

Suppose a heavy box needs to be lowered down a ramp. The box exerts a
downward force of 200 Newtons, which we will write in vector notation as
~F = 〈0,−200〉. The ramp was placed so that the box needs to be moved right 6
m, and down 3 m, so we need to get from the origin (0, 0) to the point (6,−3).

This displacement can be written as ~d = 〈6,−3〉. The force F acts straight
down, which means the ramp takes some of the force. Our goal is to find out
how much of the 200N the ramp takes, and how much force must be applied to
prevent the box from sliding down the ramp (neglecting friction). We are going

to break the force ~F into two components, one component in the direction of ~d,
and another component orthogonal to ~d.

Problem 2.17 Read the preceding paragraph. We want to write ~F as the

sum of two vectors ~F = ~w+ ~n, where ~w is parallel to ~d and ~n is orthogonal to ~d.
Since ~w is parallel to ~d, we can write ~w = c~d for some unknown scalar c. This
means that ~F = c~d+ ~n. Use the fact that ~n is orthogonal to ~d to solve for the
unknown scalar c. [Hint: dot each side of ~F = c~d+ ~n with ~d. This should turn
the vectors into numbers, so you can use division.]

The solution to the previous problem gives us the definition of a projection.

Definition 2.G. The projection of ~F onto ~d, written proj~d
~F , is defined as

proj~d
~F =

(
~F · ~d
~d · ~d

)
~d.

Problem 2.18 Let ~u = (−1, 2) and ~v = (3, 4). Draw ~u, ~v, and proj~v ~u.
Then draw a line segment from the head of ~u to the head of the projection.

Now let ~u = (−2, 0) and keep ~v = (3, 4). Draw ~u, ~v, and proj~v ~u. Then draw
a line segment from the head of ~u to the head of the projection.

One final application of projections pertains to the concept of work. Work
is the transfer of energy. If a force F acts through a displacement d, then the
most basic definition of work is W = Fd, the product of the force and the
displacement. This basic definition has a few assumptions.
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• The force F must act in the same direction as the displacement.

• The force F must be constant throughout the entire displacement.

• The displacement must be in a straight line.

Before the semester ends, we will be able to remove all 3 of these assumptions.
The next problem will show you how dot products help us remove the first
assumption.

Recall the set up to problem 2.17. We want to lower a box down a ramp
(which we will assume is frictionless). Gravity exerts a force of ~F = 〈0,−200〉 N.
If we apply no other forces to this system, then gravity will do work on the box
through a displacement of 〈6,−3〉 m. The work done by gravity will transfer
the potential energy of the box into kinetic energy (remember that work is a
transfer of energy). How much energy is transferred?

Problem 2.19 Find the amount of work done by the force ~F = 〈0,−200〉
through the displacement ~d = 〈6,−3〉. Find this by doing the following:

1. Find the projection of ~F onto ~d. This tells you how much force acts in
the direction of the displacement. Find the magnitude of this projection.

2. Since work equals W = Fd, multiply your answer above by |~d|.

3. Now compute ~F · ~d. You have just shown that W = ~F · ~d when ~F and ~d
are not in the same direction.

2.3 The Cross Product and Planes

The dot product gave us a way of multiplying two vectors together, but the
result was a number, not a vectors. We now define the cross product, which
will allow us to multiply two vectors together to give us another vector. We
were able to define the dot product in all dimensions. The cross product is only
defined in R3.

Definition 2.H: The Cross Product. The cross product of two vectors This definition is not really a
definition. It is actually a theorem.
If you use the formula given as the
definition, then you would need to
prove the three facts. We have the
tools to give a complete proof of
(1) and (3), but we would need a
course in linear algebra to prove
(2). It shouldn’t be too much of a
surprise that the cross product is
related to area, since it is defined
in terms of determinants

~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉 is a new vector ~u × ~v. This new vector
is (1) orthogonal to both ~u and ~v, (2) has a length equal to the area of the
parallelogram whose sides are these two vectors, and (3) points in the direction
your thumb points as you curl the base of your right hand from ~u to ~v. The
formula for the cross product is

~u× ~v = 〈u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1〉 = det

 ~i ~j ~k
u1 u2 u3
v1 v2 v3

 .
Problem 2.20 Let ~u = (1,−2, 3) and ~v = (2, 0,−1).

• Compute ~u× ~v and ~v × ~u. How are they related?

• Compute ~u · (~u× ~v) and ~v · (~u× ~v). Why did you get the answer you got?

• Compute ~u× (2~u). Why did you get the answer you got?
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Problem 2.21 Let P = (2, 0, 0), Q = (0, 3, 0), and R = (0, 0, 4). Find a

vector that orthogonal to both ~PQ and ~PR. Then find the area of the triangle
PQR. Construct a 3D graph of this triangle.

Problem 2.22 Consider the vectors ~ı = (1, 0, 0), 2~ = (0, 2, 0), and 3~k =
(0, 0, 3).

• Compute ~ı× 2~ and 2~×~ı.

• Compute ~ı× 3~k and 3~k ×~ı.

• Compute 2~× 3~k and 3~k × 2~.

Give a geometric reason as to why some vectors above have a plus sign, and
some have a minus sign.

We will now combine the dot product with the cross product to develop an
equation of a plane in 3D. Before doing so, let’s look at what information we
need to obtain a line in 2D, and a plane in 3D. To obtain a line in 2D, one way
is to have 2 points. The next problem introduces the new idea by showing you
how to find an equation of a line in 2D.

Problem 2.23 Suppose the point P = (1, 2) lies on line L. Suppose that the
angle between the line and the vector ~n = 〈3, 4〉 is 90◦ (whenever this happens
we say the vector ~n is normal to the line). Let Q = (x, y) be another point on

the line L. Use the fact that ~n is orthogonal to ~PQ to obtain an equation of
the line L.

Problem 2.24 Let P = (a, b, c) be a point on a plane in 3D. Let ~n = See Larson 11.5.

(A,B,C) be a normal vector to the plane (so the angle between the plane and
and ~n is 90◦). Let Q = (x, y, z) be another point on the plane. Show that an
equation of the plane through point P with normal vector ~n is

A(x− a) +B(y − b) + C(z − c) = 0.

Problem 2.25 Consider the three points P = (1, 0, 0), Q = (2, 0,−1), R = See Larson 11.5:47–58 for more
practice.(0, 1, 3). Find an equation of the plane which passes through these three points.

[Hint: first find a normal vector to the plane.]

Problem 2.26 Consider the two planes x+ 2y + 3z = 4 and 2x− y + z = 0. See Larson 11.5:91–92 for more
practice.These planes meet in a line. Find a vector that is parallel to this line. Then

find a vector equation of the line.

Problem 2.27 Find an equation of the plane containing the lines ~r1(t) = See Larson 11.5:47–58 for more
practice.(1, 3, 0)t+ (1, 0, 2) and ~r2(t) = (2, 0,−1)t+ (2, 3, 2).

Problem 2.28 Consider the points P = (2,−1, 0), Q = (0, 2, 3), and R =
(−1, 2,−4).
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1. Give an equation (x, y, z) = (?, ?, ?) of the line through P and Q.

2. Give an equation of the line through P and R.

3. Give an equation of the plane through P , Q, and R.

Problem 2.29 Consider the points P = (2, 4, 5), Q = (1, 5, 7), and R =
(−1, 6, 8).

1. What is the area of the triangle PQR.

2. Give a normal vector to the plane through these three points.

3. What is the distance from the point A = (1, 2, 3) to the plane PQR. [Hint:

Compute the projection of ~PA onto ~n. How long is it?]



Chapter 3

Curves

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to describe, graph, give equations of, and find foci for conic sections
(parabolas, ellipses, hyperbolas).

2. Model motion in the plane using parametric equations. In particular,
describe conic sections using parametric equations.

3. Find derivatives and tangent lines for parametric equations. Explain how
to find velocity, speed, and acceleration from parametric equations.

4. Use integrals to find the lengths of parametric curves.

You’ll have a chance to teach your examples to your peers prior to the exam.

3.1 Conic Sections

Before we jump fully into R3, we need some good examples of planar curves
(curves in R2) that we’ll extend to object in 3D. These examples are conic
sections. We call them conic sections because you can obtain each one by
intersecting a cone and a plane (I’ll show you in class how to do this). Here’s a
definition.

Definition 3.A. Consider two identical, infinitely tall, right circular cones
placed vertex to vertex so that they share the same axis of symmetry. A conic
section is the intersection of this three dimensional surface with any plane that
does not pass through the vertex where the two cones meet.

These intersections are called circles (when the plane is perpendicular to the
axis of symmetry), parabolas (when the plane is parallel to one side of one cone),
hyperbolas (when the plane is parallel to the axis of symmetry), and ellipses
(when the plane does not meet any of the three previous criteria).

The definition above provides a geometric description of how to obtain a
conic section from cone. We’ll not introduce an alternate definition based on
distances between points and lines, or between points and points. Let’s start
with one you are familiar with.

Definition 3.B. Consider the point P = (a, b) and a positive number r. A circle
circle with center (a, b) and radius r is the set of all points Q = (x, y) in the
plane so that the segment PQ has length r.

18
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Using the distance formula, this means that every circle can be written in
the form (x− a)2 + (y − b)2 = r2.

Problem 3.1 The equation 4x2 + 4y2 + 6x− 8y − 1 = 0 represents a circle
(though initially it does not look like it). Use the method of completing the
square to rewrite the equation in the form (x− a)2 + (y− b)2 = r2 (hence telling
you the center and radius). Then generalize your work to find the center and
radius of any circle written in the form x2 + y2 +Dx+ Ey + F = 0.

3.1.1 Parabolas

Before proceeding to parabolas, we need to define the distance between a point
and a line.

Definition 3.C. Let P be a point and L be a line. Define the distance between
P and L (written d(P,L)) to be the length of the shortest line segment that
has one end on L and the other end on P . Note: This segment will always be
perpendicular to L.

Definition 3.D. Given a point P (called the focus) and a line L (called the
directrix) which does not pass through P , we define a parabola as the set of all
points Q in the plane so that the distance from P to Q equals the distance from
Q to L. The vertex is the point on the parabola that is closest to the directrix.

Problem 3.2 Consider the line L : y = −p, the point P = (0, p), and
another point Q = (x, y). Use the distance formula to show that an equation of
a parabola with directrix L and focus P is x2 = 4py. Then use your work to
explain why an equation of a parabola with directrix x = −p and focus (p, 0) is
y2 = 4px.

Ask me about the reflective properties of parabolas in class, if I have not
told you already. They are used in satellite dishes, long range telescopes, solar
ovens, and more. The following problem provides the basis to these reflective
properties and is optional. If you wish to present it, let me know. I’ll have you
type it up prior to presenting in class.

Problem: Optional Consider the parabola x2 = 4py with directrix y = −p
and focus (0, p). Let Q = (a, b) be some point on the parabola. Let T be the
tangent line to L at point Q. Show that the angle between PQ and T is the
same as the angle between the line x = a and T . This shows that a vertical ray
coming down towards the parabola will reflect of the wall of a parabola and
head straight towards the vertex.

The next two problems will help you use the basic equations of a parabola,
together with shifting and reflecting, to study all parabolas whose axis of
symmetry is parallel to either the x or y axis.

Problem 3.3 Once the directrix and focus are known, we can give an
equation of a parabola. For each of the following, give an equation of the
parabola with the stated directrix and focus. Provide a sketch of each parabola.

1. The focus is (0, 3) and the directrix is y = −3.

2. The focus is (0, 3) and the directrix is y = 1.
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Problem 3.4 Give an equation of each parabola with the stated directrix
and focus. Provide a sketch of each parabola.

1. The focus is (2,−5) and the directrix is y = 3.

2. The focus is (1, 2) and the directrix is x = 3.

Problem 3.5 Each equation below represents a parabola. Find the focus,
directrix, and vertex of each parabola, and then provide a rough sketch.

1. y = x2

2. (y − 2)2 = 4(x− 1)

Problem 3.6 Each equation below represents a parabola. Find the focus,
directrix, and vertex of each parabola, and then provide a rough sketch.

1. y = −8x2 + 3

2. y = x2 − 4x+ 5

3.1.2 Ellipses

Definition 3.E. Given two points F1 and F2 (called foci) and a fixed distance
d, we define an ellipse as the set of all points Q in the plane so that the sum of
the distances F1Q and F2Q equals the fixed distance d. The center of the ellipse
is the midpoint of the segment F1F2. The two foci define a line. Each of the two
points on the ellipse that intersect this line is called a vertex. The major axis is
the segment between the two vertexes. The minor axis is the largest segment
perpendicular to the major axis that fits inside the ellipse.

We can derive an equation of an ellipse in a manner very similar to how
we obtained an equation of a parabola. The following problem will walk you
through this. We will not have time to present this problem in class. However,
if you would like to complete the problem and write up your solution on the
wiki, you can obtain presentation points for doing so. Let me know if you are
interested.

Problem: Optional Consider the ellipse produced by the fixed distance d

and the foci F1 = (c, 0) and F2 = (−c, 0). Let (a, 0) and (−a, 0) be the vertexes
of the ellipse.

1. Show that d = 2a by considering the distances from F1 and F2 to the
point Q = (a, 0).

2. Let Q = (0, b) be a point on the ellipse. Show that b2 + c2 = a2 by
considering the distance between Q and each focus.

3. Let Q = (x, y). By considering the distances between Q and the foci, show
that an equation of the ellipse is

x2

a2
+
y2

b2
= 1.
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4. Suppose the foci are along the y-axis (at (0,±c)) and the fixed distance d
is now d = 2b, with vertexes (0,±b). Let (a, 0) be a point on the x axis
that intersect the ellipse. Show that we still have

x2

a2
+
y2

b2
= 1,

but now we instead have a2 + c2 = b2.

You’ll want to use the results of the previous problem to complete the

problems below. The key equation above is x2

a2 + y2

b2 = 1. The foci will be on
the x-axis if a > b, and will be on the y-axis if b > a. The second part of the
problem above shows that the distance from the center of the ellipse to the
vertex is equal to the hypotenuse of a right triangle whose legs go from the
center to a focus, and from the center to an end point of the minor axis.

The next three problems will help you use the basic equations of an ellipse,
together with shifting and reflecting, to study all ellipses whose major axis is
parallel to either the x- or y-axis.

Problem 3.7 For each ellipse below, graph the ellipse and give the coordi-
nates of the foci and vertexes.

1. 16x2 + 25y2 = 400 [Hint: divide by 400.]

2.
(x− 1)2

5
+

(y − 2)2

9
= 1

Problem 3.8 For the ellipse x2 + 2x + 2y2 − 8y = 9, sketch a graph and
give the coordinates of the foci and vertexes.

Problem 3.9 Given an equation of each ellipse described below, and provide
a rough sketch.

1. The foci are at (2± 3, 1) and vertices at (2± 5, 1).

2. The foci are at (−1, 3± 2) and vertices at (−1, 3± 5).

Ask me about the reflective properties of an ellipse in class, if I have not
told you already. The following problem provides the basis to these reflective
properties and is optional. If you wish to present it, let me know. I’ll have you
type it up prior to presenting in class.

Problem: Optional Consider the ellipse x2

a2 + y2

b2 = 1 with foci F1 = (c, 0)

and F2 = (−c, 0). Let Q = (x, y) be some point on the ellipse. Let T be the
tangent line to the ellipse at point Q. Show that the angle between F1Q and T
is the same as the angle between F2Q and T . This shows that a ray from F1

to Q will reflect off the wall of the ellipse at Q and head straight towards the
other focus F2.
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3.1.3 Hyperbolas

Definition 3.F. Given two points F1 and F2 (called foci) and a fixed number d,
we define a hyperbola as the set of all points Q in the plane so that the difference
of the distances F1Q and F2Q equals the fixed number d or −d. The center
of the hyperbola is the midpoint of the segment F1F2. The two foci define a
line. Each of the two points on the hyperbola that intersect this line is called a
vertex.

We can derive an equation of a hyperbola in a manner very similar to how
we obtained an equation of an ellipse. The following problem will walk you
through this. We will not have time to present this problem in class.

Problem: Optional Consider the hyperbola produced by the fixed number

d and the foci F1 = (c, 0) and F2 = (−c, 0). Let (a, 0) and (−a, 0) be the
vertexes of the hyperbola.

1. Show that d = 2a by considering the difference of the distances from F1

and F2 to the vertex (a, 0).

2. Let Q = (x, y) be a point on the hyperbola. By considering the difference
of the distances between Q and the foci, show that an equation of the

hyperbola is x2

a2 −
y2

c2−a2 = 1, or if we let c2− a2 = b2, then the equation is

x2

a2
− y2

b2
= 1.

3. Suppose the foci are along the y-axis (at (0,±c)) and the number d is now
d = 2b, with vertexes (0,±b). Let a2 = c2 − b2. Show that an equation of
the hyperbola is

y2

b2
− x2

a2
= 1.

You’ll want to use the results of the previous problem to complete the
problems below.

Problem 3.10 Consider the hyperbola x2

a2 −
y2

b2 = 1. Construct a box
centered at the origin with corners at (a,±b) and (−a,±b). Draw lines through
the diagonals of this box. Rewrite the equation of the hyperbola by solving for
y and then factoring to show that as x gets large, the hyperbola gets really close
to the lines y = ± b

ax. [Hint: rewrite so that you obtain y = ± b
ax
√

something].
These two lines are often called oblique asymptotes.

Now apply what you have just done to sketch the hyperbola x2

25 −
y2

9 = 1
and give the location of the foci.

The next three problems will help you use the basic equations of a hyperbola,
together with shifting and reflecting, to study all ellipses whose major axis is
parallel to either the x- or y-axis.

Problem 3.11 For each hyperbola below, graph the hyperbola (include the
box and asymptotes) and give the coordinates of the foci and vertexes.

1. 16x2 − 25y2 = 400 [Hint: divide by 400.]

2.
(x− 1)2

5
− (y − 2)2

9
= 1
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Problem 3.12 For the hyperbola x2 + 2x − 2y2 + 8y = 9, sketch a graph
(include the box and asymptotes) and give the coordinates of the foci and
vertexes.

Problem 3.13 Given an equation of each hyperbola described below, and
provide a rough sketch.

1. The vertexes are at (2± 3, 1) and foci at (2± 5, 1).

2. The vertexes are at (−1, 3± 2) and foci at (−1, 3± 5).

Ask me about the reflective properties of a hyperbola in class, if I have not
told you already. In particular, we can discuss lasers and long range telescopes.
The following problem provides the basis to these reflective properties and is
optional. If you wish to present it, let me know. I’ll have you type it up prior
to presenting in class.

Problem: Optional Consider the hyperbola x2

a2 −
y2

b2 = 1 with foci F1 =

(c, 0) and F2 = (−c, 0). Let Q = (x, y) be a point on the hyperbola. Let T be
the tangent line to the hyperbola at point Q. Show that the angle between F1Q
and T is the same as the angle between F2Q and T . This shows that if you
begin a ray from a point in the plane and head towards F1 (where the wall of
the hyperbola lies between the start point and F1), then when the ray hits the
wall at Q, it reflects off the wall and heads straight towards the other focus F2.

3.2 Parametric Equations

In middle school, you learned to write an equation of a line as y = mx+ b. In
the vector unit, we learned to write this in vector form as (x, y) = (1,m)t+(0, b).
The equation to the left is called a vector equation. It is equivalent to writing
the two equations

x = 1t+ 0, y = mt+ b,

which we will call parametric equations of the line. We were able to quickly
develop equations of lines in space, by just adding a third equation for z.

Parametric equations provide us with a way of specifying the location (x, y, z)
of an object by giving an equation for each coordinate. We will use these
equations to model motion in the plane and in space. In this section we’ll focus
mostly on planar curves.

Definition 3.G. If each of f and g are continuous functions, then the curve in
the plane defined by x = f(t), y = g(t) is called a parametric curve, and the
equations x = f(t), y = g(t) are called parametric equations for the curve. You
can generalize this definition to 3D and beyond by just adding more variables.

Problem 3.14 By plotting points, construct graphs of the three parametric
curves given below (just make a t, x, y table, and then plot the (x, y) coordinates).
Place an arrow on your graph to show the direction of motion.

1. x = cos t, y = sin t, for 0 ≤ t ≤ 2π.
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2. x = sin t, y = cos t, for 0 ≤ t ≤ 2π.

3. x = cos t, y = sin t, z = t, for 0 ≤ t ≤ 4π.

Problem 3.15 Plot the path traced out by the parametric curve x = 1 +

2 cos t, y = 3 + 5 sin t. Then use the trig identity cos2 t + sin2 t = 1 to give a
Cartesian equation of the curve (an equation that only involves x and y). What
are the foci of the resulting object (it’s a conic section).

Problem 3.16 Find parametric equations for a line that passes through What we did in the previous
chapter should help here.the points (0, 1, 2) and (3,−2, 4).

Problem 3.17 Plot the path traced out by the parametric curve ~r(t) =
(t2 + 1, 2t− 3). Give a Cartesian equation of the curve (eliminate the parameter
t), and then find the focus of the resulting curve.

Problem 3.18 Consider the parametric curve given by x = tan t, y = sec t.
Plot the curve for −π/2 < t < π/2. Give a Cartesian equation of the curve (a
trig identity will help). Then find the foci of the resulting conic section. [Hint:
this problem will probably be easier to draw if you first find the Cartesian
equation, and then plot the curve.]

3.2.1 Derivatives and Tangent lines

We’re now ready to discuss calculus on parametric curves. The derivative of
a vector valued function is defined using the same definition as first semester
calculus.

Definition 3.H. If ~r(t) is a vector equation of a curve (or in parametric form
just x = f(t), y = g(t)), then we define the derivative to be

d~r

dt
= lim
h→0

~r(t+ h)− ~r(t)
h

.

The subtraction above requires vector subtraction. The following problem
will provide a simple way to take derivatives which we will use all semester long.

Problem 3.19 Show that if ~r(t) = (f(t), g(t)), then the derivative is just
d~r
dt = (f ′(t), g′(t)).

[The definition above says that d~r
dt = lim

h→0

~r(t+ h)− ~r(t)
h

. We were told

~r(t) = (f(t), g(t)), so use this in the derivative definition. Then try to modify
the equation to obtain d~r

dt = (f ′(t), g′(t)).]

The previous problem shows you can take the derivative of a vector valued
function by just differentiating each component separately. The next problem
shows you that velocity and acceleration are still connected to the first and
second derivatives.
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Problem 3.20 Consider the parametric curve given by ~r(t) = (3 cos t, 3 sin t).

1. Graph the curve ~r, and compute d~r
dt and d2~r

dt2 .

2. On your graph, draw the vectors d~r
dt

(
π
4

)
and d2~r

dt2

(
π
4

)
with their tail placed

on the curve at ~r
(
π
4

)
. These vectors represent the velocity and acceleration

vectors.

3. Give a vector equation of the tangent line to this curve at t = π
4 . (You

know a point and a direction vector.)

Definition 3.I. If an object moves along a path ~r(t), we can find the velocity
and acceleration by just computing the first and second derivatives. The velocity

is d~r
dt , and the acceleration is d2~r

dt2 . Speed is a scalar, not a vector. The speed of
an object is just the length of the velocity vector.

Problem 3.21 Consider the curve ~r(t) = (2t+ 3, 4(2t− 1)2).

1. Construct a graph of ~r for 0 ≤ t ≤ 2.

2. If this curve represented the path of a horse running through a pasture,
find the velocity of the horse at any time t, and then specifically at t = 1.
What is the horse’s speed at t = 1?

3. Find a vector equation of the tangent line to ~r at t = 1. Include this on
your graph.

4. Show that the slope of the line is

dy

dx

∣∣
x=5

=
(dy/dt)

∣∣
t=1

(dx/dt)
∣∣
t=1

.

[How can you turn the direction vector, which involves (dx/dt) and (dy/dt)
into a slope (dy/dx)?]

3.2.2 Arc Length

If an object moves at a constant speed, then the distance travelled is

distance = speed× time.

This requires that the speed be constant. What if the speed is not constant?
Over a really small time interval dt, the speed is almost constant, so we can
still use the idea above. The following problem will help you develop the key
formula for arc length.

Problem 3.22: Derivation of the arc length formula Suppose an ob-

ject moves along the path given by ~r(t) = (x(t), y(t)) for a ≤ t ≤ b.

1. Show that the object’s speed at any time t is

√(
dx

dt

)2

+

(
dy

dt

)2

.

2. If you move over a really small time interval, say of length dt, then the speed

is almost constant. If you move at constant speed

√(
dx

dt

)2

+

(
dy

dt

)2

for

a time length dt, what’s the distance ds you have traveled.
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3. Explain why the length of the path given by ~r(t) for a ≤ t ≤ b is This is the arc length formula.
Ask me in class for an alternate
way to derive this formula.

s =

∫
ds =

∫ b

a

∣∣∣∣d~rdt
∣∣∣∣ dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Problem 3.23 Find the length of the curve ~r(t) =

(
t3,

3t2

2

)
for t ∈ [1, 3].

The notation t ∈ [1, 3] means 1 ≤ t ≤ 3. Be prepared to show us your integration
steps in class (you’ll need a u-substitution).

Problem 3.24 For each curve below, set up an integral formula which would
give the length, and sketch the curve. Do not worry about integrating them. The reason I don’t want you to

actually compute the integrals is
that they will get ugly really fast.
Try doing one in Wolfram Alpha
and see what the computer gives.

1. The parabola ~p(t) = (t, t2) for t ∈ [0, 3].

2. The ellipse ~e(t) = (4 cos t, 5 sin t) for t ∈ [0, 2π].

3. The hyperbola ~h(t) = (tan t, sec t) for t ∈ [−π/4, π/4].

To actually compute the integrals above and find the lengths, we would use
a numerical technique to approximate the integral (something akin to adding
up the areas of lots and lots of rectangles as you did in first semester calculus).



Chapter 4

Functions

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe uses for, and construct graphs of, space curves and parametric
surfaces. Find derivatives of space curves, and use this to find velocity,
acceleration, and find equations of tangent lines.

2. Describe uses for, and construct graphs of, functions of several variables.
For functions of the form z = f(x, y), this includes both 3D surface plots
and 2D level curve plots. For functions of the form w = f(x, y, z), construct
plots of level surfaces.

3. Describe uses for, and construct graphs of, vector fields and transforma-
tions.

4. If you are given a description of a vector field, curve, or surface (instead
of a function or parametrization), explain how to obtain a function for the
vector field, or a parametrization for the curve or surface.

You’ll have a chance to teach your examples to your peers prior to the exam.

4.1 Function Terminology

A function is a set of instructions involving two sets (called the domain and
codomain). A function assigns to each element of the domain D exactly one
element in the codomain R. We’ll often refer to the codomain R as the target
space. We’ll write

f : D → R

when we want to remind ourselves of the domain and target space. In this class,
we will study what happens when the domain and target space are subsets of
Rn (Euclidean n-space). In particular, we will study functions of the form

f : Rn → Rm,

when m and n are 3 or less. The value of n is the dimension of the input vector
(or number of inputs). The number m is the dimension of the output vector (or
number of outputs). Our goal is to understand uses for each type of function,
and be able to construct graphs to represent the function.

We will focus most of our time this semester on two- and three-dimensional
problems. However, many problems in the real world require a higher number of

27
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dimensions. When you hear the word “dimension”, it does not always represent
a physical dimension, such as length, width, or height. If a quantity depends
on 30 different measurements, then the problem involves 30 dimensions. As a
quick illustration, the formula for the distance between two points depends on 6
numbers, so distance is really a 6-dimensional problem. As another example, if
a piece of equipment has a color, temperature, age, and cost, we can think of
that piece of equipment being represented by a point in four-dimensional space
(where the coordinate axes represent color, temperature, age, and cost).

Problem 4.1 A pebble falls from a 64 ft tall building. Its height (in ft) above See Sage or Wolfram Alpha.
Follow the links to Sage or
Wolfram Alpha in all the problems
below to see how to get the
computer to graph the function.

the ground t seconds after it drops is given by the function y = f(t) = 64− 16t2.
What are n and m when we write this function in the form f : Rn → Rm?
Construct a graph of this function. How many dimensions do you need to graph
this function?

4.2 Parametric Curves: ~f : R→ Rm

Problem 4.2 A horse runs around an elliptical track. Its position at time t See Sage or Wolfram Alpha. See
also Chapter 3 of this problem set.

See also Larson 10.2. You can also
find more practice in 12.1 and
12.3.

is given by the function ~r(t) = (2 cos t, 3 sin t). We could alternatively write this
as x = 2 cos t, y = 3 sin t.

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. Construct a graph of this function.

3. Next to a few points on your graph, include the time t at which the horse
is at this point on the graph. Include an arrow for the horse’s direction.

4. How many dimensions do you need to graph this function?

Notice in the problem above that we placed a vector symbol above the
function name, as in ~r : Rn → Rm. When the target space (codomain) is 2-
dimensional or larger, we place a vector above the function name to remind us
that the output is more than just a number.

Problem 4.3 Consider the pebble from problem 4.1. The pebble’s height See Sage or Wolfram Alpha. See
also Larson 12.3.was given by y = 64− 16t2. The pebble also has some horizontal velocity (it’s

moving at 3 ft/s to the right). If we let the origin be the base of the 64 ft building,
then the position of the pebble at time t is given by ~r(t) = (3t, 64− 16t2).

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. At what time does the pebble hit the ground (the height reaches zero)?
Construct a graph of the pebble’s path from when it leaves the top of the
building till when it hits the ground.

3. Find the pebble’s velocity and acceleration vectors at t = 1? Draw these See Section 3.2.1 and
Definition 3.I.vectors on your graph with their base at the pebble’s position at t = 1.

4. At what speed is the pebble moving when it hits the ground?

In the next problem, we keep the input as just a single number t, but the
output is now a vector in R3.

https://sagecell.sagemath.org/?z=eJwrsS1LLNJQL1HXtOYqyMkv0TAz0TU00yqJM9JR0CjRMdAx0tQEAL5TCVo
http://wolfr.am/xoc07E
https://sagecell.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
https://sagecell.sagemath.org/?z=eJwNxksKgCAUBdB5q3Dmh2eQfWZuJXmIgpAodtt_Dg6crKC92g1IXIfdLoPb6aXz4JowSgz9aVCZhAJZt540aRL89hQRBqM0L_lDq7NR6h-iAhhm
http://wolfr.am/ynm3kD
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Problem 4.4 A jet begins spiraling upwards to gain height. The position of See Sage or Wolfram Alpha. More
practice is in Larson 12.1:9–12,
21–24, 27–32.

the jet after t seconds is modeled by the equation ~r(t) = (2 cos t, 2 sin t, t). We
could alternatively write this as x = 2 cos t, y = 2 sin t, z = t.

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. Construct a graph of this function by picking several values of t and
plotting the resulting points (2 cos t, 2 sin t, t).

3. Next to a few points on your graph, include the time t at which the jet is
at this point on the graph. Include an arrow for the jet’s direction.

4. How many dimensions do you need to graph this function?

In all the problems above, you should have noticed that in order to draw
a function (provided you include arrows for direction, or use an animation to
represent “time”), you can determine how many dimensions you need to graph
a function by just summing the dimensions of the domain and codomain. This
is true in general.

Problem 4.5 Use the same set up as problem 4.4, namely See Section 3.2.1 and
Definition 3.I.

More practice in Larson
12.2:23–30.

~r(t) = (2 cos t, 2 sin t, t).

You’ll need a graph of this function to complete this problem.

1. Find the first and second derivative of ~r(t).

2. Compute the velocity and acceleration vectors at t = π/2. Place these
vectors on your graph with their tails at the point corresponding to t = π/2.

3. Give an equation of the tangent line to this curve at t = π/2.

4.3 Parametric Surfaces: ~f : R2 → R3

We now increase the number of inputs from 1 to 2. This will allow us to graph
many space curves at the same time.

Problem 4.6 The jet from problem 4.4 is actually accompanied by several See Sage or Wolfram Alpha. More
practice in Larson 15.5:1–6.jets flying side by side. As all the jets fly, they leave a smoke trail behind them

(it’s an air show). The smoke from one jet spreads outwards to mix with the
neighboring jet, so that it looks like the jets are leaving a rather wide sheet
of smoke behind them as they fly. The position of two of the many other jets
is given by ~r3(t) = (3 cos t, 3 sin t, t) and ~r4(t) = (4 cos t, 4 sin t, t). A function
which represents the smoke stream is ~r(a, t) = (a cos t, a sin t, t) for 0 ≤ t ≤ 4π
and 2 ≤ a ≤ 4.

1. What are n and m when we write the function ~r(a, t) = (a cos t, a sin t, t)
in the form ~r : Rn → Rm?

2. Start by graphing the position of the three jets ~r(2, t) = (2 cos t, 2 sin t, t),
~r(3, t) = (3 cos t, 3 sin t, t) and ~r(4, t) = (4 cos t, 4 sin t, t).

3. Let t = 0 and graph the curve r(a, 0) = (a, 0, 0) for a ∈ [2, 4]. Then repeat
this for t = π/2, π, 3π/2.

4. Describe the resulting surface.

https://sagecell.sagemath.org/?z=eJxL0yjRtNUw0krOLwaydBSMtIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBY0SHQMdBROtgkxNTQAYOxGO
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%282+cos+t%2C+2+sin+t%2C+t%29+for+t+from+0+to+4+pi
https://sagecell.sagemath.org/?z=eJxL0yjRUUjUtNVI1ErOL9Yo0QTytIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBaAOAx0FE62CTKASjUQdBSMgT1OTCwBCiRSf
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%28a+cos+t%2C+a+sin+t%2C+t%29+for+t+from+0+to+4+pi+and+a+from+2+to+4
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The function above is called a parametric surface. Parametric surfaces are
formed by joining together many parametric space curves. Most of 3D computer
animation is done using parametric surfaces. Woody’s entire body in Toy Story
is a collection of parametric surfaces. Car companies create computer models of
vehicles using parametric surfaces, and then use those parametric surfaces to
study collisions. Often the mathematics behind these models is hidden in the
software program, but parametric surfaces are at the heart of just about every
3D computer model.

Problem 4.7 Consider the parametric surface ~r(u, v) = (u cos v, u sin v, u2) See Sage or Wolfram Alpha.

for 0 ≤ u ≤ 3 and 0 ≤ v ≤ 2π. Construct a graph of this function. To do so, let
u equal a constant (such as 1, 2, 3) and then graph the resulting space curve.
Then let v equal a constant (such as 0, π/2, etc.) and graph the resulting space
curve until you can visualize the surface. [Hint: Think satellite dish.]

4.4 Functions of Several Variables: f : Rn → R
In this section we’ll focus on functions of the form f : R2 → R1 and f : R3 → R1;
we’ll keep the output as a real number. In the next problem, you should notice
that the input is a vector (x, y) and the output is a number z. There are two
ways to graph functions of this type. The next two problems show you how.

Problem 4.8 A computer chip has been disconnected from electricity and See Sage or Wolfram Alpha.

See Larson 13.1:33–40.sitting in cold storage for quite some time. The chip is connected to power, and
a few moments later the temperature (in Celsius) at various points (x, y) on
the chip is measured. From these measurements, statistics is used to create a
temperature function z = f(x, y) to model the temperature at any point on the
chip. Suppose that this chip’s temperature function is given by the equation
z = f(x, y) = 9− x2 − y2. We’ll be creating a 3D model of this function in this
problem, so you’ll want to place all your graphs on the same x, y, z axes.

1. What is the temperature at (0, 0), (1, 2), and (−4, 3)?

2. If you let y = 0, construct a graph of the temperature z = f(x, 0) =
9− x2 − 02, or just z = 9− x2. In the xz plane (where y = 0) draw this
upside down parabola.

3. Now let x = 0. Draw the resulting parabola in the yz plane.

4. Now let z = 0. Draw the resulting curve in the xy plane.

5. Once you’ve drawn a curve in each of the three coordinate planes, it’s
useful to pick an input variable (either x or y) and let it equal various
constants. So now let x = 1 and draw the resulting parabola in the plane
x = 1. Then repeat this for x = 2.

6. Describe the shape. Add any extra features to your graph to convey the
3D image you are constructing.

Problem 4.9 We’ll be using the same function z = f(x, y) = 9− x2 − y2 as See Sage or Wolfram Alpha.

See Larson 13.1:45–56.the previous problem. However, this time we’ll construct a graph of the function
by only studying places where the temperature is constant. We’ll create a graph
in 2D of the surface (similar to a topographical map).

https://sagecell.sagemath.org/?z=eJxL0yjVUSjTtNUo1UrOL9Yo09RRKNUqzsyDsOKMNLkKEosSc1NLijKT4wty8ks00nQUQHoMdBRMgEo0ynQMdIy0CjI1NQFPyxVa
http://wolfr.am/A90cfW
https://sagecell.sagemath.org/?z=eJxL06jQqdS0tdStiDPSrYwz4irIyS8xTtFI01EAyuga6xhrAlmVEJYmADAVC84
http://wolfr.am/wny0IF
https://sagecell.sagemath.org/?z=eJydj81qwzAQhO9-iiWXWCCHJqbQHHTtExR6KI1RnBVWWWuNVibR21fOH_Ta2-7M7PCtqy86K7NvLoddkw-7aiJO7al2GorTtLpVZcq3SW1k4HOtqiGNVK8-EZY0pDPDyTuHEUMCSZlQgB30HBLP8RoSEIbMM_Q2gCCWdcQllAb8EwSekucgm5Wq7nq36IXoCfTg0Y9LMV8veqtf9Zvefy8qcTzaaD7ijLof7WTWP5jWT_7_FpM9IsmtFpwnMu-WBPVV73wgH_DuWpmwT1205RuzVdUvSwN0NA
http://wolfr.am/wny0IF
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1. Which points in the plane have zero temperature? Just let z = 0 in
z = 9− x2 − y2. Plot the corresponding points in the xy-plane, and write
z = 0 next to this curve. This curve is called a level curve. As long as you
stay on this curve, your temperature will remain level, it will not increase
nor decrease.

2. Which points in the plane have temperature z = 5? Add this level curve
to your 2D plot and write z = 5 next to it.

3. Repeat the above for z = 8, z = 9, and z = 1. What’s wrong with letting
z = 10?

4. Using your 2D plot, construct a 3D image of the function by lifting each
level curve to its corresponding height.

Definition 4.A. A level curve of a function z = f(x, y) is a curve in the xy-
plane found by setting the output z equal to a constant. Symbolically, a level
curve of f(x, y) is the curve c = f(x, y) for some constant c. A 2D plot consisting
of several level curves is called a contour plot of z = f(x, y).

Problem 4.10 Consider the function f(x, y) = x− y2. See Sage or Wolfram Alpha.

See Larson 13.1:45–56.
1. Construct a 3D surface plot of f . [So just graph in 3D the curves given by
x = 0 and y = 0 and then try setting x or y equal to some other constants,
like x = 1, x = 2, y = 1, y = 2, etc.]

2. Construct a contour plot of f . [So just graph in 2D the curves given by
setting z equal to a few constants, like z = 0, z = 1, z = −4, etc.]

3. Which level curve passes through the point (2, 2)? Draw this level curve
on your contour plot.

Notice that when we graphed the previous two functions (of the form z =
f(x, y)) we could either construct a 3D surface plot, or we could reduce the
dimension by 1 and construct a 2D contour plot by letting the output z equal
various constants. The next function is of the form w = f(x, y, z), so it has 3
inputs and 1 output. We could write f : R3 → R1. We would need 4 dimensions
to graph this function, but graphing in 4D is not an easy task. Instead, we’ll
reduce the dimension and create plots in 3D to describe the level surfaces of the
function.

Problem 4.11 Suppose that an explosion occurs at the origin (0, 0, 0). Heat See Sage. Wolfram Alpha
currently does not support
drawing level surfaces. You could
also use Mathematica or Wolfram
Demonstrations.

See Larson 11.6 and 13.1:69–74, as
well as 13.1, Example 6.

from the explosion starts to radiate outwards. Suppose that a few moments
after the explosion, the temperature at any point in space is given by w =
T (x, y, z) = 100− x2 − y2 − z2.

1. Which points in space have a temperature of 99? To answer this, replace
T (x, y, z) by 99 to get 99 = 100− x2 − y2 − z2. Use algebra to simplify
this to x2 + y2 + z2 = 1. Draw this object.

2. Which points in space have a temperature of 96? of 84? Draw the surfaces.

3. What is your temperature at (3, 0,−4)? Draw the level surface that passes
through (3, 0,−4).

4. The 4 surfaces you drew above are called level surfaces. If you walk along
a level surface, what happens to your temperature?

https://sagecell.sagemath.org/?z=eJxL06jQqdS0rdCtjDPiKs7IL9coyMkvMU7RSNNRAErpGusYawJZlRCWpiZETXJ-Xkl-aVE8SC12lToKybmJBbbqWakl6kB2fk5-UVJikW1IUWmqTk5iUmpOMZitqQkAhh0mmg
http://wolfr.am/wBOk1b
https://sagecell.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkCtEAszRtDQ0MdCvijHQrgbgqzogrM7cgJzM5syS-ICe_xDhFA67Q1tJSRwHIUdA11lEw1gSyK8FsMLMKytRUAADtWRrw
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
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5. As you move outwards, away from the origin, what happens to your
temperature?

Problem 4.12 Consider the function w = f(x, y, z) = x2+z2. This function See Sage.

See Larson 11.6:7–16.has an input y, but notice that changing the input y does not change the output
of the function.

1. Draw a graph of the level surface w = 4. [When y = 0 you can draw one
curve. When y = 1, you should draw the same curve. When y = 2, again
you draw the same curve. This kind of graph is called a cylinder, and is
important in manufacturing where you extrude an object through a hole.]

2. Graph the surface 9 = x2 + z2 (so the level surface w = 9).

3. Graph the surface 16 = x2 + z2.

Most of our examples of function of the form w = f(x, y, z) can be drawn by
using our knowledge about conic sections. We can graph ellipses and hyperbolas
if there are only two variables. So the key idea is to set one of the variables
equal to a constant and then graph the resulting curve. Repeat this with a few
variables and a few constants, and you’ll know what the surface is. Sometimes
when you set a specific variable equal to a constant, you’ll get an ellipse. If
this occurs, try setting that variable equal to other constants, as ellipses are
generally the easiest curves to draw.

Problem 4.13 Consider the function w = f(x, y, z) = x2 − y2 + z2. See Sage.

See Larson 11.6 and 13.1:69–74, as
well as 13.1, Example 6.1. Draw a graph of the level surface w = 1. [You need to graph 1 = x2−y2+z2.

Let x = 0 and draw the resulting curve. Then let y = 0 and draw the
resulting curve. Let either x or y equal some more constants (whichever
gave you an ellipse), and then draw the resulting ellipses.]

2. Graph the level surface w = 4. [Divide both sides by 4 (to get a 1 on the
left) and the repeat the previous part.]

3. Graph the level surface w = −1. [Try dividing both sides by a number to
get a 1 on the left. If y = 0 doesn’t help, try y = 1 or y = 2.]

4. Graph the level surface that passes through the point (3, 5, 4). [Hint: what
is f(3, 5, 4)?]

4.5 Vector Fields and Transformations: ~f : Rn →
Rn

We’ve covered the following types of functions in the problems above.

• y = f(x) or f : R→ R (functions of a single variable)

• ~r(t) = (x, y) or f : R→ R2 (parametric curves)

• ~r(t) = (x, y, z) or f : R→ R3 (space curves)

• ~r(u, v) = (x, y, z) or f : R2 → R3 (parametric surfaces)

https://sagecell.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMtKvijLgycwtyMpMzS-ILcvJLjFM04ApsTXQUgGwFXWMdBWNNILsSzAYzq6BMTQUAEvYY4A
https://sagecell.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMdCvjjLSr4oy4MnMLcjKTM0viC3LyS4xTNOCKbA11FIBsBV1jHQVjTSC7EswGM6ugTE0FAIXAGhM
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• z = f(x, y) or f : R2 → R (functions of two variables)

• z = f(x, y, z) or f : R3 → R (functions of three variables)

This section We will consider functions from R2 to R2 and functions from R3

to R3. Depending on the application, we may view these functions as either
transformations of 2D or 3D space, or we may view them as vector fields in the
plane or space.

4.5.1 Vector Fields

A vector field ~F (x, y) = (M,N) is visualized by putting the vector (M,N) at the
point (x, y), so you end up with a picture with a lot of vectors. These are often
used to visualize flows of air or liquids. For example, see VisLab, the NOAA
visualizations, Tim Urness’s research page, or the International Visualization
Challenge. There are also lots of other visualizations challenges. Figuring out
how to convey information in an asthetic and effective way is a tough challenge.

Problem 4.14 Consider the vector field ~F (x, y) = (2x+ y, x+ 2y). In this See Sage or Wolfram Alpha. The
computer will shrink the largest
vector down in size so it does not
overlap any of the others, and
then reduce the size of all the
vectors accordingly.

See Larson 15.1:1–19.

problem, you will construct a graph of this vector field by hand.

1. Compute ~F (1, 0). Then draw the vector F (1, 0) with its base at (1, 0).

2. Compute ~F (1, 1). Then draw the vector F (1, 1) with its base at (1, 1).

3. Repeat the above process for the points (0, 1), (−1, 1), (−1, 0), (−1,−1),
(0,−1), and (1,−1). Remember, at each point draw a vector.

Problem 4.15: Spin field Consider the vector field ~F (x, y) = (−y, x). Change the Sage code in the link
above to get the computer to plot
this to check your work.

See Larson 15.1:1–19.

Construct a graph of this vector field. Remember, the key to plotting a vector
field is “at the point (x, y), draw the vector ~F (x, y) with its base at (x, y).” Plot
at least 8 vectors (a few in each quadrant), so we can see what this field is doing.

We can also visualize 3d vector fields like ~F (x, y, z) = (y, z, x). See Sage.

4.5.2 Transformations

Coordinate transformations let us view or discuss the plane or space in a different
way. A 2d transformation ~T (u, v) = (x, y) tells us how to transform a (u, v) axes

into an (x, y) axes—the two outputs of ~T are considered the x and y coordinates
corresponding to the inputs u and v.

Problem 4.16 Consider the coordinate transformation For this problem, you are just
drawing many parametric curves.

Click here or here for some help
visualizing this transformation.

See Larson 10.5.

~T (r, θ) = (r cos θ, r sin θ).

In other words, according to ~T , x = r cos θ and y = r sin θ. This is called the
polar coordinate transformation. We will talk more about this transformation
in the next chapter.

1. Draw two 2D axes, one having horizontal axis r and vertical axis θ, and
the other axes having horizontal axis x and vertical axis y. In the next few
parts, we’ll see how ~T will tell us how points on the (r, θ) axes transform
to points on the (x, y) axes.

http://ccom.unh.edu/vislab/projects/2d_flow_vis.html
http://nowcoast.noaa.gov/
http://nowcoast.noaa.gov/
http://artsci.drake.edu/urness/research.html
http://www.nsf.gov/news/special_reports/scivis/
http://www.nsf.gov/news/special_reports/scivis/
https://sagecell.sagemath.org/?z=eJxz06jQqdRUsFXQMNKq0K7UqdA20qrU5CrIyS-JL0tNLskvik_LTM1J0XDTUQAq1TU00DE00ASyK2FsTQCKaxIN
http://wolfr.am/y4gIgX
https://sagecell.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
http://artsci.drake.edu/grout/mathbox/examples/polar.html
http://artsci.drake.edu/grout/mathbox/examples/polar2.html
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2. Plot the point (r, θ) = (1, π/2) on the (r, θ) axes. According to ~T , this
point is transformed to what (x, y) point? Plot this corresponding point
on the (x, y) axes.

3. Plot the line segment r = 3 (for θ ∈ [0, 2π]) on the (r, θ) axes. Plot the See Sage to check your answer.

corresponding points on the (x, y) axes by letting r = 3 in ~T and graphing
~T (3, θ) = (3 cos θ, 3 sin θ) for θ ∈ [0, 2π] (hint: this is just a parametric
curve, like we’ve been plotting).

4. Plot the line segment θ = π/4 (for r ∈ [0, 5]) on the (r, θ) axes. Plot the See Sage. Notice that you can add
two plots together to draw them
both.

corresponding points on the (x, y) axes by letting θ = π
4 and then, on the

same axes as above, add the graph of ~T
(
r, π4

)
=
(
r
√
2
2 , r

√
2
2

)
for r ∈ [0, 5].

5. To the same axes as above, add the graphs of ~T (1, θ), ~T (2, θ), ~T (4, θ) for Use Sage to check your answer.

θ ∈ [0, 2π] and ~T (r, 0), ~T (r, π/2), ~T (r, 3π/4), ~T (r, π) for r ∈ [0, 5].

In the previous problem, you saw how we can think of 2D transformations
as mapping the points of one plane onto another. Another way of thinking
about transformations is to view them as giving additional coordinates to points
on the plane, i.e., if ~T (u, v) = (x, y), then the point (x, y) also can be called

the point (u, v) in the coordinate system associated with ~T . The next problem
investigates this way of thinking about transformations.

Problem 4.17 The transformation ~T (r, θ) = (r cos θ, r sin θ) is called the See Larson 10.4.

polar coordinate transformation. We will use this transformation to answer the
following questions.

1. ~T (2, π/6) = (a, b). What is (a, b)? Draw the vector (a, b), starting at the
origin.

2. Show that the length of the vector (a, b) is 2. This is the “radius” of the
point (a, b).

3. Show that the angle between the positive x-axis and the vector (a, b) is
π/6. This angle is called the azimuth angle.

4. Show that if ~T (r, θ) = (x, y), then the “radius” of the point (x, y) is r.

5. Show that if ~T (r, θ) = (x, y), then the azimuth angle of the vector (x, y)
is θ.

Problem 4.18 Sometimes a transformation may associate multiple coordi-
nates with the same (x, y) point on the plane. In this problem, again use the

polar coordinate transform ~T (r, θ) = (r cos θ, r sin θ). Find 5 different (r, θ) so

that ~T (r, θ) = (
√

3, 1) (each of these is a different set of polar coordinates for
the same point (x, y) = (

√
3, 1)). Make at least one of your (r, θ) coordinates

have a negative r, and at least one have a negative θ.

Problem 4.19 Consider the coordinate transformation

~T (a, ω) = (a cosω, a2 sinω).

1. Let a = 3; graph the curve ~T (3, ω) = (3 cosω, 9 sinω) for ω ∈ [0, 2π]. See Sage.

https://sagecell.sagemath.org/?z=eJwtizEKwCAMAHdfETolkqG0s79wLyJCA62GmP_TwW53B5fR2O_mhRJarGPiMgaLU_pvFNSkO2wZLZ0EMjeGxUGLlbe5Sb30GY4rM6yVYWc4ogrRBx0PIJI=&lang=sage
https://sagecell.sagemath.org/?z=eJxljM0KwkAMhO99iqGnZA1Y_DnuW_QuSykY0DZk8_5YXNGCt_n5ZkZyifschTN5mtZKzQk8VV0-jjtzXQL9SJ7PDK29oOlf80az6fHyBXZRZ8XLcw7X6WaPNajNBQ0SDIJTMmXGAf_s7mmbuAxyZX4Bxl853w==&lang=sage
https://sagecell.sagemath.org/?z=eJwti7sKwCAMAHe_IjglkqHY2b9wbgkiJVAfqP9PB7vdHVxE4VbyIxRQXGoTtzHI5d3U-juZPrQusBElnAQ6LcNm02VIyWtouvvbFu7MsFeGg8G7rkQfMv4giA
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2. Let ω = π
4 and then, on the same axes as above, add the graph of Use Sage to check your answer.

~T
(
a, π4

)
=
(
a
√
2
2 , a

2
√
2
2

)
for a ∈ [0, 4].

3. To the same axes as above, add the graphs of ~T (1, ω), ~T (2, ω), ~T (4, ω) for Use Sage to check your answer.

ω ∈ [0, 2π] and ~T (a, 0), ~T (a, π/2), ~T (a,−π/6) for a ∈ [0, 4].

[Hint: when you’re done, you should have a bunch of parabolas and ellipses.]

In 3 dimensions, the most common coordinate systems are cylindrical and
spherical. The equations for these coordinate systems are in the table below.

Cylindrical Coordinates Spherical Coordinates

x = r cos θ
y = r sin θ
z = z

x = ρ sinφ cos θ
y = ρ sinφ sin θ
z = ρ cosφ

Problem 4.20 Let P = (x, y, z) be a point in space. This point lies on a See Larson 11.7.

x

y

z

θ

P

r

z

cylinder of radius r, where the cylinder has the z axis as its axis of symmetry.
The height of the point is z units up from the xy plane. The point casts a
shadow in the xy plane at Q = (x, y, 0). The angle between the ray ~OQ and
the x-axis is θ.

1. Explain why x = r cos θ, y = r sin θ, and z = z.

2. What are bounds on r, θ, and z that will give all points on the surface of
a cylinder of radius 1 wrapped around the z axis between the xy plane
and z = 1? [Hint: the bounds on r are r = 1.]

3. What are bounds on r, θ, and z that will give all points inside a solid
cylinder of radius 2 wrapped around the z-axis extending from 1 unit
below the xy plane to 1 unit above the xy plane?

Problem 4.21 Let P = (x, y, z) be a point in space. This point lies on a See Larson 11.7.

x

y

z

θ

ρ
P

ϕ

sphere of radius ρ (“rho”), where the sphere’s center is at the origin O = (0, 0, 0).
The point casts a shadow in the xy plane at Q = (x, y, 0). The angle between

the ray ~OQ and the x-axis is θ, and is called the azimuth angle. The angle
between the ray ~OP and the z axis is φ (“phi”), and is called the inclination
angle, polar angle, or zenith angle.

1. Explain why x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cosφ.

2. What are bounds for ρ, θ, and φ that will give all the points on the surface
a sphere of radius 1? [Hint: the bounds for ρ are ρ = 1.]

3. What are bounds on ρ, θ, and φ that will give all the points on or above
the xy plane inside a solid sphere of radius 1?

4. What are bounds on ρ, θ, and φ that will give all the points on the surface
of a sphere of radius 2 above the plane z = 1 and where the y coordinates
are positive?

There is some disagreement between different fields about the notation for See the Wikipedia or MathWorld
for a discussion of conventions in
different disciplines.

spherical coordinates. In some fields (like physics), φ represents the azimuth
angle and θ represents the inclination angle. In some fields, like geography,

http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://mathworld.wolfram.com/SphericalCoordinates.html
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instead of the inclination angle, the elevation angle is given—the angle from
the xy-plane (lines of lattitude are from the elevation angle). Additionally,
sometimes the coordinates are written in a different order. You should always
check the notation for spherical coordinates before communicating using them.

Problem 4.22 Consider the spherical coordinates transformation See Larson 11.7:89–94, 111–114.

~T (ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ),

Graphing this transformation requires 3 + 3 = 6 dimensions. In this problem
we’ll construct parts of this graph by graphing various surfaces. We did something
similar for the polar coordinate transformation in problem 4.16.

1. Graph the surface T (2, θ, φ) (in other words, the surface ρ = 2) where See Sage or Wolfram Alpha.

θ ∈ [0, 2π], φ ∈ [0, π].

2. Graph T (ρ, θ, π/4) for ρ ≥ 0, θ ∈ [0, 2π] (in other words, all points where See Sage or Wolfram Alpha.

φ = π/4). What happens if ρ can be negative (i.e., ρ ∈ R)?

3. Graph T (ρ, θ, π/2) for ρ ∈ R, θ ∈ [0, 2π] (in other words, all points where
φ = π/2).

4. Graph T (ρ, π/4, φ) for ρ ≥ 0, φ ∈ [0, π] (in other words, all points where
θ = π/4).

4.6 Constructing Functions

We now know how to draw a vector field provided someone tells us the equation.
How do we obtain an equation of a vector field? The following problem will
help you develop the gravitational vector field.

Problem 4.23: Radial fields Do the following: Use Sage to plot your vector fields.

See Larson 15.1:1–19.
1. Let P = (x, y, z) be a point in space. At the point P , let ~F (x, y, z) be the

vector which points from P to the origin. Give a formula for ~F (x, y, z).

2. Give an equation of the vector field where at each point P in the plane,
the vector ~F2(P ) is a unit vector that points towards the origin.

3. Give an equation of the vector field where at each point P in the plane,
the vector ~F3(P ) is a vector of length 7 that points towards the origin.

4. Give an equation of the vector field where at each point P in the plane,
the vector ~G(P ) points towards the origin, and has a magnitude equal to
1/d2 where d is the distance to the origin.

If someone gives us parametric equations for a curve in the plane, we know
how to draw the curve. How do we obtain parametric equations of a given
curve? In problem 4.2, we were given the parametric equation for the path of
a horse, namely x = 2 cos t, y = 3 sin t or ~r(t) = (2 cos t, 3 sin t). From those
equations, we drew the path of the horse, and could have written a Cartesian
equation for the path. How do we work this in reverse, namely if we had only

been given the ellipse
x2

4
+
y2

9
= 1, could we have obtained parametric equations

~r(t) = (x(t), y(t)) for the curve?

https://sagecell.sagemath.org/?z=eJxVjsEKhDAMRO9-xeCpKTmId__C-1JEaEBtaPP_bLMirLe8ecOQNdRcGJqFYXm3RFjgWWxyhR5T3EoLt2K8hB__wosuaNAql2FcfWiZCdJGxkODpprO3apsHz2KhUcw7jnGxJijiie_zzp3oi_jZjWn
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%282+sin+phi+cos+theta%2C+2+sin+phi+sin+theta%2C+2+cos+phi%29
https://sagecell.sagemath.org/?z=eJxVjrEKwzAMRPd8xZHJMioNTdf8RfZiQsCCNha2_p9WyeJuuveOQ2uouTA0C8PybomwwFlscoQfpriVFi7F-BN-9MKLLmjQKodhXD0uKvcnQdrI6MCgqabPblW2l76Lhc4xrl3GxHhEFSfnn7eZMRN9AfBbOD8
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%28rho+sin+%28pi%2F4%29+cos+theta%2C+rho+sin+%28pi%2F4%29+sin+theta%2C+rho+cos+%28pi%2F4%29%29+
https://sagecell.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
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Problem 4.24 Give a parametrization of the top half of the ellipse
x2

a2
+
y2

b2
= Use Sage or Wolfram Alpha to

visualize your parameterizations.
1, so y ≥ 0. You can write your parametrization in the vector form ~r(t) = (?, ?),
or in the parametric form x =?, y =?. Include bounds for t. [Hint: Review 4.2.]

Problem 4.25 Give a parametrization of the straight line from (a, 0) to
(0, b). You can write your parametrization in the vector form ~r(t) = (?, ?), or
in the parametric form x =?, y =?. Remember to include bounds for t. [Hint:
Review 2.9 and 3.16.]

Problem 4.26 Give a parametrization of the parabola y = x2 from (−1, 1)
to (2, 4). Remember the bounds for t.

Problem 4.27 Give a parametrization of the function y = f(x) for x ∈ [a, b].
You can write your parametrization in the vector form ~r(t) = (?, ?), or in the
parametric form x =?, y =?. Include bounds for t.

If someone gives us parametric equations for a surface, we can draw the
surface. This is what we did in problems 4.6 and 4.7. How do we work backwards
and obtain parametric equations for a given surface? This requires that we write
an equation for x, y, and z in terms of two input variables (see 4.6 and 4.7 for
examples). In vector form, we need a function ~r : R2 → R3. We can often use a

coordinate transformation ~T : R3 → R3 to obtain a parametrization of a surface.
The next three problems show how to do this.

Problem 4.28 Consider the surface z = 9− x2 − y2 plotted in problem 4.8. Use Sage or Wolfram Alpha to
plot your parametrization.

See Larson 15.5:21–30 and 15.5,
Example 3.

1. Using the rectangular coordinate transformation ~T (x, y, z) = (x, y, z), give
a parametrization ~r : R2 → R3 of the surface.

This is the same as saying

x = x, y = y, z =?.

[Hint: Use the surface equation to eliminate the input variable z in T .]

2. What bounds must you place on x and y to obtain the portion of the
surface above the plane z = 0?

3. If z = f(x, y) is any surface, give a parametrization of the surface (i.e.,
x =?, y =?, z =? or ~r(?, ?) = (?, ?, ?).)

Problem 4.29 Again consider the surface z = 9− x2 − y2. Use Sage or Wolfram Alpha to
plot your parametrization with
your bounds (see 4.28 for
examples).

See Larson 15.5:1–10

1. Using cylindrical coordinates, ~T (r, θ, z) = (r cos θ, r sin θ, z), obtain a
parametrization ~r(r, θ) = (?, ?, ?) of the surface using the input variables
r and θ. In other words, if we let x = r cos θ, y = r sin θ, z = z, write
z = 9− x2 − y2 in terms of r and θ.

2. What bounds must you place on r and θ to obtain the portion of the
surface above the plane z = 0?

https://sagecell.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
https://sagecell.sagemath.org/?z=eJwL0ajQqdSp0lSwVYCyuAqKMvNKFJRCNKpsK7QrNRUyi5V0FGA8roLEosTc1JKizOT4gpz8Eg2YhA5Iv66xjjGIVQlhaQIALhka5w
http://wolfr.am/zk2KTu
https://sagecell.sagemath.org
http://wolframalpha.com
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Problem 4.30 Recall the spherical coordinate transformation We did very similar things in
problem 4.22.

See Larson 15.5:1–10~T (ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

This is a function of the form ~T : R3 → R3. If we hold one of the three inputs
constant, then we have a function of the form ~r : R2 → R3, which is a parametric
surface.

1. Give a parametrization of the sphere of radius 2, using φ and θ as your Use Sage or Wolfram Alpha to
plot each parametrization (see
4.28 for examples).

input variables.

2. Give a set of bounds on φ and θ that will hit every point on the sphere.

3. What bounds should you place on φ and θ if you only want the portion of
the sphere above the plane z = 1?

Sometimes you’ll have to invent your own coordinate system when construct-
ing parametric equations for a surface. If you notice that there are lots of circles
parallel to one of the coordinate planes, try using a modified version of cylindrical
coordinates. Instead of circles in the xy plane (x = r cos θ, y = r sin θ, z = z),
maybe you need circles in the yz-plane (x = x, y = r cos θ, z = r sin θ) or the
xz plane. Just look for lots of circles, and then construct your parametrization
accordingly.

Problem 4.31 Find parametric equations for the surface x2 + z2 = 9. [Hint: See Larson 15.5:21–30.

read the paragraph above.]

1. What bounds should you use to obtain the portion of the surface between Use Sage or Wolfram Alpha to
plot each parametrization (see
4.28 for examples).

y = −2 and y = 3?

2. What bounds should you use to obtain the portion of the surface above
z = 0?

3. What bounds should you use to obtain the portion of the surface with
x ≥ 0 and y ∈ [2, 5]?

https://sagecell.sagemath.org
http://www.wolframalpha.com/
https://sagecell.sagemath.org
http://www.wolframalpha.com/


Chapter 5

Polar Coordinates

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to convert between rectangular and polar coordinates in 2D.

2. Graph polar functions in the plane. Find intersections of polar equations,
and illustrate that not every intersection can be obtained algebraically
(you may have to graph the curves).

3. Find derivatives and tangent lines in polar coordinates.

You’ll have a chance to teach your examples to your peers prior to the exam.

5.1 Polar Coordinates

In the last section, we studied various plane and space transformations. These See Larson section 10.4 for more
reference material on the things
we cover in this chapter.

were viewed as either transforming the plane (stretching, shrinking, folding,
etc.), or as a way of giving different labels to the same physical location. In this
chapter, we look at the polar coordinate transformation more deeply.

Up to now, we most often give the location of a point (or coordiantes of a
vector) by stating the (x, y) coordinates. These are called the Cartesian (or
rectangular) coordinates. Some problems are much easier to work with if we
know how far a point is from the origin, together with the angle between the
x-axis and a ray from the origin to the point.

Problem 5.1 There are two parts to this problem.

1. Consider the point P with Cartesian (rectangular) coordinates (2, 1). Find

the distance r from P to the origin. Consider the ray ~OP from the origin
through P . Find an angle between ~OP and the x-axis.

2. Suppose that a point Q = (a, b) is 6 units from the origin, and the angle

the ray ~OP makes with the x-axis is π/4 radians. Find the Cartesian
(rectangular) coordinates (a, b) of Q.

Definition 5.A. Let Q be be a point in the plane with Cartesian coordinates
(x, y). Let O = (0, 0) be the origin. We define the polar coordinates of Q to be
the ordered pair (r, θ) where r is the displacement from the origin to Q, and θ

is an angle of rotation (counter-clockwise) from the x-axis to the ray ~OP .

39
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Problem 5.2 The following points are given using their polar coordinates.
Plot the points in the Cartesian plane, and give the Cartesian (rectangular)
coordinates of each point. The points are

(1, π),

(
3,

5π

4

)
,
(
−3,

π

4

)
, and

(
−2,−π

6

)
.

The next problem provides general formulas for converting between the
Cartesian (rectangular) and polar coordinate systems.

Problem 5.3 Suppose that Q is a point in the plane with Cartesian coor-
dinates (x, y) and polar coordinates (r, θ).

1. Write formulas for x and y in terms of r and θ: x =?, y =?

2. Write a formula to find the distance r from Q to the origin (in terms of x
and y): r =?

3. Write a formula to find the angle θ between the x-axis and a line connecting
Q to the origin, in terms of x and y: θ =?. [Hint: A picture of a triangle
will help here.]

In problem 5.3, you should have obtained the polar coordinate transformation:
T (r, θ) = (r cos θ, r sin θ) (or x = r cos θ, y = r sin θ).

Problem 5.4: Ignore In the plane, graph the curve y = sinx for x ∈ [0, 2π]

(make an x, y table) and then graph the curve r = sin θ for θ ∈ [0, 2π] (an r, θ
table). The graph should look very different. If one looks like a circle, you’re on
the right track.

Problem 5.5 Each of the following equations is written in the Cartesian
(rectangular) coordinate system. Convert each to an equation in polar coordi-
nates, and then solve for r so that the equation is in the form r = f(θ).

1. x2 + y2 = 7

2. 2x+ 3y = 5

3. x2 = y

Problem 5.6 Each of the following equations is written in the polar coor-
dinate system. Convert each to an equation in the Cartesian coordinates.

1. r = 9 cos θ

2. r =
4

2 cos θ + 3 sin θ

3. θ = 3π/4
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5.1.1 Graphing and Intersections

To construct a graph of a polar curve, just create an r, θ table. Choose values for
θ that will make it easy to compute any trig functions involved. Then connect
the points in a smooth manner, making sure that your radius grows or shrinks
appropriately as your angle increases.

Problem 5.7 Graph the polar curve r = 2 + 2 cos θ.
See Sage.

Problem 5.8 Graph the polar curve r = 2 sin 3θ. Use Sage to check your answer.

Problem 5.9 Graph the polar curve r = 3 cos 2θ. Use Sage to check your answer.

Problem 5.10 Find the points of intersection of r = 3 − 3 cos θ and r =
3 cos θ. (If you don’t graph the curves, you’ll probably miss a few points of
intersection.)

5.1.2 Calculus with Polar Coordinates

Recall that for parametric curves ~r(t) = (x(t), y(t)), to find the slope of the
curve we just compute

dy

dx
=
dy/dt

dx/dt
.

A polar curve of the form r = f(θ) can be thought of as just the parametric
curve (x, y) = (f(θ) cos θ, f(θ) sin θ). So you can find the slope by computing

dy

dx
=
dy/dθ

dx/dθ
.

Problem 5.11 Consider the polar curve r = 1 + 2 cos θ. (It wouldn’t hurt
to provide a quick sketch of the curve.)

1. Compute both dx/dθ and dy/dθ.

2. Find the slope dy/dx of the curve at θ = π/2.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at θ = π/2.

http://sagecell.sagemath.org/?z=eJwr0ijJSC1J1FSwVTDSNtJKzi-GCnAV5OckFsUX5OSXaBTpKEBEdQx0jLQKMjU1uQD67RE_&lang=sage


Chapter 6

Derivatives

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Find limits, and be able to explain when a function does not have a limit
by considering different approaches.

2. Compute partial derivatives. Explain how to obtain the total derivative
from the partial derivatives (using a matrix).

3. Find equations of tangent lines and tangent planes to surfaces. We’ll do
this three ways.

4. Find derivatives of composite functions, using the chain rule (matrix
multiplication).

You’ll have a chance to teach your examples to your peers prior to the exam.

6.1 Limits

In the previous chapter, we learned how to describe lots of different functions.
In first-semester calculus, after reviewing functions, you learned how to compute
limits of functions, and then used those ideas to develop the derivative of a
function. The exact same process is used to develop calculus in high dimensions.
One glitch that will prevent us from developing calculus this way in high
dimensions is the epsilon-delta definition of a limit. We’ll review it briefly.
Those of you who want to pursue further mathematical study will spend much
more time on this topic in future courses.

In first-semester calculus, you learned how to compute limits of functions.
Here’s the formal epsilon-delta definition of a limit.

Definition 6.A. Let f : R → R be a function. We write lim
x→c

f(x) = L if and

only if for every ε > 0, there exists a δ > 0 such that 0 < |x − c| < δ implies
|f(x)− L| < ε.

We’re looking at this formal definition here because we can compare it with
the formal definition of limits in higher dimensions. The only difference is that
we just put vector symbols above the input x and the output f(x).

Definition 6.B. Let ~f : Rn → Rm be a function. We write lim
~x→~c

~f(~x) = ~L if

and only if for every ε > 0, there exists a δ > 0 such that 0 < |~x−~c| < δ implies

|~f(~x)− ~L| < ε.
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We’ll find that throughout this course, the key difference between first-
semester calculus and multivariate calculus is that we replace the input x and
output y of functions with the vectors ~x and ~y.

Problem 6.1 For the function f(x, y) = z, we can write f in the vector

notation ~y = ~f(~x) if we let ~x = (x, y) and ~y = (z). Notice that ~x is a vector of
inputs, and ~y is a vector of outputs. For each of the functions below, state what
~x and ~y should be so that the function can be written in the form ~y = ~f(~x). The point to this problem is to

help you learn to recognize the
dimensions of the domain and
codomain of the function. If we
write ~f : Rn → Rm, then ~x is a
vector in Rn with n components,
and ~y is a vector in Rm with m
components.

1. f(x, y, z) = w

2. ~r(t) = (x, y, z)

3. ~r(u, v) = (x, y, z)

4. ~F (x, y) = (M,N)

5. ~F (ρ, φ, θ) = (x, y, z)

You learned to work with limits in first-semester calculus without needing the
formal definitions above. Many of those techniques apply in higher dimensions.
The following problem has you review some of these technique, and apply them
in higher dimensions.

Problem 6.2 Do these problems without using L’Hopital’s rule.

1. Compute lim
x→2

x2 − 3x+ 5 and then lim
(x,y)→(2,1)

9− x2 − y2.

2. Compute lim
x→3

x2 − 9

x− 3
and then lim

(x,y)→(4,4)

x− y
x2 − y2

.

3. Explain why lim
x→0

x

|x|
does not exist. [Hint: graph the function.]

In first semester calculus, we can show that a limit does or does not exist by
considering what happens from the left, and comparing it to what happens on
the right. You probably used the following theorem extensively.

If y = f(x) is a function defined on some open interval containing c,
then lim

x→c
f(x) exists if and only if lim

x→c−
f(x) = lim

x→c+
f(x).

A limit exists precisely when the limits from every direction exists, and all direc-
tional limits are equal. In first-semester calculus, this required that you check
two directions (left and right). This theorem generalizes to higher dimensions,
but it becomes much more difficult to apply.

Example 6.C. Consider the function f(x, y) =
x2 − y2

x2 + y2
. Our goal is to deter-

mine if the function has a limit at the origin (0, 0). We can approach the origin
along many different lines.

One line through the origin is the line y = 2x. If we stay on this line, then
we can replace each y with 2x and then compute

lim
(x, y)→ (0, 0)

y = 2x

x2 − y2

x2 + y2
= lim
x→0

x2 − (2x)2

x2 + (2x)2
= lim
x→0

−3x2

5x2
= lim
x→0

−3

5
=
−3

5
.

This means that if we approach the origin along the line y = 2x, we will have a
height of −3/5 when we arrive at the origin.
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If the function f(x, y) =
x2 − y2

x2 + y2
has a limit at the origin, the previous

problem suggests that limit will be −3/5.

Problem 6.3 Please read the previous example. Recall that we are looking

for the limit of the function f(x, y) =
x2 − y2

x2 + y2
at the origin (0,0). Our goal is You may want to look at a graph

in Sage or Wolfram Alpha (try
using the “contour lines” option).
As you compute each limit, make
sure you understand what that
limit means in the graph.

to determine if the function has a limit at the origin (0, 0).

1. In the xy-plane, how many lines pass through the origin (0, 0)? Give an
equation a line other than y = 2x that passes through the origin. Then
compute

lim
(x, y)→ (0, 0)

your line

x2 − y2

x2 + y2
= lim
x→0

x2 − (?)2

x2 + (?)2
= . . . .

2. Give another equation a line that passes through the origin. Then compute

lim
(x, y)→ (0, 0)

your line

x2 − y2

x2 + y2
.

3. Does this function have a limit at (0, 0)? Explain. See Larson 13.2:23–36 and
example 4 for more practice.

The theorem from first-semester calculus generalizes as follows.

If ~y = ~f(~x) is a function defined on some open region containing

~c, then lim
~x→~c

~f(~x) exists if and only if the limit exists along every

possible approach to ~c and all these limits are equal.

There’s a fundamental problem with using this theorem to check if a limit exists.
Once the domain is 2-dimensional or higher, there are infinitely many ways to
approach a point. There is no longer just a left and right side. To prove a limit
exists, you must check infinitely many cases—that takes a really long time. The
real power to this theorem is it allows to show that a limit does not exist. All
we have to do is find two approaches with different limits.

Problem 6.4 Consider the function f(x, y) =
xy

x2 + y2
. Does this function See Sage.

See Larson 13.2:9–36 for more
practice.

have a limit at (0, 0)?

1. Examine the function at (0, 0) by considering the limit as you approach
the origin along several lines.

2. Convert xy
x2+y2 to polar coordinates (i.e., a function of r and θ). As (x, y)

approaches the origin, what does r approach? Take the limit of your polar
coordinate function as r approaches that value and interpret your result.

Instructor: Try changing the
above problem to polar
coordinates and taking the limit as

r approaches 0. Then try x2y
x2+y2

In all the examples above, we considered approaching a point by traveling
along a line. However, even if a function has a consistent limit along every line,
that is not enough to always guarantee the function has a limit. The theorem
requires every approach be consistent, which includes parabolic approaches,
spiraling approaches, and more. Sometimes the straight-line paths happen to
be consistent with each other, but a different path gives a different limit. Give
some thought to this in the optional challenge problem below.

https://sagecell.sagemath.org/?z=eJxL06jQqdS01aiIM9KtjDPS1AextEEsXq7k_LyS_NKi-IKc_BKNNB2gSl1jHWNNHY1KKCM5Pye_KCmxyDakqDRVJzk3scBWPSu1RF1Trzgjv1wDaARIq3EKNs2aALkvIzE=
http://wolfr.am/ioCqzX
https://sagecell.sagemath.org/?z=eJyVVF1r2zAUfc-vuKQFy7PS2QndoCBY2dtgMFjfShtubLnW6lhCUlqrv37XlvOxtdtYEoKlc3TOufcKn50BfNFNBzcWn5Tj8FU5N_yMUfBZt618kBy-G6u6B1jmRTGbPaFlSc9Dks4-qc5Li6WfVbKGNauF6szOrze6Z7SDu9YL1r8L6XvW3y-zcL9MUz6D8WP8W-Sc5ymHFjeyFfNvmvSv4JyRWyrO5xyeVeUbUeQHFTTGaiyb4g2xRX9Qup5oUJBc-LvU8g0pSv9aa_laa5JKr8aHPuchF8aPi6GFHhq_bVlyDW5naywl7eoNbtoADTpAaNVWeUAPviFsKB9UPSysBOWg0wTS2aqSHZQNdg-0TU-61TayLpJ0MIv2diDQAHifLwr6y4oYMExAoHgEhAOwTyVIsvN6Z9em1Z7VPErx6SQvt2hE8kP6hI_eG7Tixu4IiMecuJx6MRa0jpWIWBFjY1_SeFQkVlYJd-pFilXOX7StpBWreLqmsnCokB3mzI9zmrp8EjwTamtaVQ6WQ_CwwH30ffLouWmxfEymohv9zE5yZpNYRLGXTqC1xGFR6ra44-M13a-XcZ1mEy2fzEYi3ebjxsA85eV8UURCzov0aJgJL3u_qti8p9t19Mkuislqj4f5r_oj4wR_me_lCZkcjBiaQ2j9W3NAG6TeBZFffOADJzbEiY-XFJpy_d9QTCYMWtxKb1UZB0J3EXnNgkB6EcDhVm1VJ449ozX24tgy36jysZPOidUf52f-qYLOyNKvLXqlxW3B6XuXzn4C8NyNiQ
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Problem: Challenge Give an example of a function f(x, y) so that the Instructor: Sage

limit at (0, 0) along every straight line y = mx exists and equals 0. However,
show that the function has no limit at (0, 0) by considering an approach that is
not a straight line.

6.2 The Derivative

Before we introduce derivatives, let’s recall the definition of a differential. If
y = f(x) is a function, then we say the differential dy is the expression dy =
f ′(x)dx (we could also write this as dy = dy

dxdx). Think of differential notation
dy = f ′(x)dx in the following way:

A small change in the output y equals the derivative multiplied by a
small change in the input x. In other words, if the input x changes
by a small amount dx, then we multiply that small change by the
derivative to determine how much y changes (i.e., dy).

To get the derivative in all dimensions, we just substitute in vectors to obtain
the differential notation d~y = f ′(~x)d~x. The derivative is precisely the thing that
tells us how to get d~y from d~x. We’ll quickly see that the derivative f ′(~x) must
be a matrix, and we’ll start writing it as Df instead of f ′.

We’ve actually already dealt with problems involving derivatives of multiple-
variable functions in first-semester calculus. The next few problems are very
similar to related rates or differential problems from first-semester calculus, and
we’ll see how the derivative f ′ in dy = f ′(x)dx naturally generalizes to a matrix.

Problem 6.5 The volume of a right circular cylinder is V (r, h) = πr2h. See Larson 3.7 and 4.8.

Imagine that each of V , r, and h depends on t (we might be collecting rain
water in a can, or crushing a cylindrical concentrated juice can, etc.).

1. If the height remains constant, but the radius changes, what is dV/dt in
terms of dr/dt? Use this to find a formula for dV in terms of dr when h
is constant.

2. If the radius remains constant, but the height changes, what is dV/dt in
terms of dh/dt? What is dV when r is constant?

3. If both the radius and height change, what is dV/dt in terms of dh/dt and
dr/dt? Solve for dV .

4. Show that we can write dV as the matrix product of a 1-row by 2-column The matrix
[
2πrh πr2

]
is the

derivative of V . The columns of
this matrix are the partial
derivatives of V . The partial
derivatives make up the whole.

matrix with a 2-row by 1-column matrix:

dV =
[
2πrh πr2

] [dr
dh

]
.

How do the columns of the first matrix relate to the calculations you did
above?

5. If we know that r = 3 and h = 4, and we know that r increases by about .1 Make sure you ask me in class to
show you physically exactly how
you can see these differential
formulas.

and h increases by about .2, then approximate how much V will increase.
Use your formula for dV to approximate this.

Problem 6.6 The volume of a box is V (x, y, z) = xyz. Imagine that each
variable depends on t.

https://sagecell.sagemath.org/?z=eJyVVNFq2zAUfQ_kH0RasDwrmZ2sGxQEK3sbDAbtW2nDjS3HWh1LSEpr9et3bdl1tnaUJSGxdI_OOfdckbMzQr6rqiE3Bh6lZeSHtLb7aC3JN1XXYi8YudZGNnuyTrNsPpvPHsHQqGU-iuezr7JxwkDu5rNClGRLSy4bfXTbnWop7sCxdpy29-sPPv6Iv58Sf7-OYzafkf6l3Vv4lKUxIzXsRM0XPxVqXJJzipIxP18w8iQLV_EsnWhAa6Mgr7I32JbtC9XVACMZ8vl3uNZvcGEjr8nWr8lGrvgyPLUp8ynXLqy6OB2p3KGm0RWxR1NCLnBX7WBXe1KBJUBqeZCOgCOuwlqXAZFltzCCSEsahUU8WxSiIXkFzR638UnVygTUKoo7scGA6RA4Cdamywy_kmww6YeKR4dY8VNlNMaRtXHqaLa6Vo6WLJCx4SjLD6B59Eu4iPXyOzD8xhyxEI5ZfjEm0je1Dd3w0BWlfThxOMsjI4qIWfks-CZlz8oUwvDNcLzE3qBrk74MnE3zGsM-8Z5wedC1zDvRzrtfwuh-NB9UdzXkD9HYeKWe6InVZGAbytAKy8EYBNFAdpvdsf7Ojut1WMfJAEsHuR6IV3va6JCnuJQtswBIWRafKCbcidZtCrpo8aZNQskqG7TGul_8KdAjTurPi5EfK6OE5l1AWC7_CogoDZif5-nqM-swIRPLv1ygbTT2v6PRCddg4CCckXkYC15LYCX1HPCvgbxcr4Ns-JQbrqHlU2yukvlDI6zlm39PUb9LA1aL3G0NOKn4bcbwfYcMvwGmS49T
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1. If both y and z remain constant, what is dV/dt? Use this to find a formula
for dV in terms of dx, assuming that y and z are constant.

2. Repeat the last step for when y is the only variable that changes, and then
for when z is the only variable that changes.

3. What is dV/dt in terms of dx/dt, dy/dt, and dz/dt when all three variables
are changing? Solve for dV .

4. Show that we can write dV as the matrix product of a 1-row by 3-column The matrix
[
yz ? ?

]
is the

derivative of V . The columns of
this matrix are the partial
derivatives of V . The partial
derivatives make up the whole.

matrix with a 3-row by 1-column matrix:

dV =
[
yz ? ?

] dxdy
dz

 .
How do the columns of the first matrix relate to the previous portions of
the problem.

5. If the current measurements of a box are x = 2, y = 3, and z = 5, and we
know that x increases by .01, y increases by .02, and z decreases by .03,
then by about how much will the volume change? Use your formula for
dV to approximate this.

Part 4 in each problem above, expressing relationships between changes in Using differentials to analyze how
outputs of a function change when
the inputs change comes up in
many applications, such as
analyzing numerical roundoff error
in calculations or analyzing
manufacturing tolerances.

terms of differentials, is the KEY idea, let me repeat, THE KEY IDEA, to
the rest of this course. The essential thing is that we can use differentials to
understand and approximate how small changes in the inputs of a function
will change the outputs of the function. For example, we can approximate the
change in a function f(x, y) if we know how much x and y will change.

Problem 6.7 Consider the function f(x, y) = x2y + 3x+ 4 sin(5y).

1. If both x and y depend on t, then use implicit differentiation to obtain a
formula for df/dt in terms of dx/dt and dy/dt.

2. Solve for df , and write your answer as the matrix product (fill in the
blank)

df =
[
? x2 + 20 cos(5y)

] [dx
dy

]
.

3. If you hold y constant (so dy = 0), then what is df/dx?

4. If you hold x constant (so dx = 0), then what is df/dy?

We need to add some vocabulary to make it easier to talk about what we
just did. Let’s introduce the vocabulary in terms of the problem above, and
then make a formal definition.

• The derivative of f in the previous problem is the matrix

Df(x, y) =
[
2xy + 3 x2 + 20 cos(5y)

]
.

Some people call Df the total derivative or the matrix derivative of f .

• The first column of this matrix is just part of the whole derivative—the
part that deals with how changes in x affect the output. We can get the
first column by holding y constant, and then differentiating with respect
to x. We call this the partial derivative of f with respect to x. We’ll write
this as ∂f

∂x = 2xy + 3 or fx = 2xy + 3.
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• The second column of the derivative is the partial derivative of f with
respect to y—it tells us how changes in y affect the output. We can get
the second column by holding x constant and differentiating with respect
to y. We’ll write this as ∂f

∂y = x2 + 20 cos(5y) or fy = x2 + 20 cos(5y).

• Remember, the derivative of f is a matrix. The columns of the matrix are
the partial derivatives with respect to the corresponding input variables—
the first column is the partial derivative with respect to the first input
variable, etc.

Now we generalize the above example.

Definition 6.D: Derivatives and Partial Derivatives. Let f be a function.

• The partial derivative of f with respect to x is the normal first-semester
calculus derivative of f , provided we hold every every input variable
constant except x. We’ll use the notations

∂f

∂x
,

∂

∂x
[f ], fx, and Dxf

to mean the partial of f with respect to x.

• The partial of f with respect to y, written
∂f

∂y
,
∂

∂y
[f ], fy, or Dyf , is

the normal first-semester calculus derivative of f , provided we hold every
input variable constant except y. A similar definition holds for partial
derivatives with respect to any variable.

• The derivative of f is a matrix. The columns of the derivative are the The textbook only talks about
partial derivatives. We emphasize
the total derivative because it is
more powerful, simpler, and helps
us understand the concepts much
better.

partial derivatives. When there’s more than one input variable, we’ll use
Df rather than f ′ to talk about derivatives. The order of the columns
must match the order you list the variables in the function. If the function

is f(x, y), then the derivative is Df(x, y) =
[
∂f
∂x

∂f
∂y

]
. If the function is

V (x, y, z), then the derivative is DV (x, y, z) =
[
∂V
∂x

∂V
∂y

∂V
∂z

]
.

It’s time to practice these new words in some problems. Remember, we’re
doing the exact same thing as before the definitions above. Now we just have
some vocabulary which makes it much easier to talk about differentiation.

Problem 6.8 Compute the requested partial and total derivatives. Use Sage to check your answers.
See Larson 13.3:9–40 for more
practice in doing partial
derivatives. I strongly suggest you
practice a lot of this type of
problem until you can compute
partial derivatives with ease.

1. For f(x, y) = x2 + 2xy + 3y2, compute both
∂f

∂x
and fy. Then state

Df(x, y).

2. For f(x, y, z) = x2y3z4, compute fx,
∂f

∂y
, and Dzf . Then state Df(x, y, z).

When a function has multiple outputs, its partial derivatives will have
multiple components, which we write as a column vector. For example, if

f(x, y) = (3x2, sin(x) + xy), then fx =

(
6x

cos(x) + y

)
. This is similar to when

we were computing derivatives of space curves, for example in Problem 3.20.

Example 6.E. Let ~F (x, y) = (−y3, 2xy), a 2D vector field. Then ~Fx =

[
0
2y

]
,

~Fy =

[
−3y2

2x

]
, and D~F =

[
0 −3y2

2y 2x

]
. Also, d~F =

[
0 −3y2

2y 2x

] [
dx
dy

]
. Remem-

ber that we can visualize a vector field by drawing arrows on the plane (for

http://sagecell.sagemath.org/?z=eJxL06jQqdS0rYgz0jbSqtCq1DbWqowz4uXi5SooyswrUVAKyUhVSEktyixLLMksS1XILFYCSabppWSmpWlognUDAKNdE5Y=&lang=sage
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example, like wind velocities at every point on the plane). We can interpret this
last equation as saying that if we are at a point (x, y) on the plane, and we move

a small distance away to (x + dx, y + dy), then d~F approximates how much
the wind vector changes between the two points (i.e., how much the output

of ~F changes). The derivative D~F relates a small change in inputs (moving
a small distance) to changes the outputs (the wind vector). We can then ask
questions like: what direction should I move so that the velocity of the wind
goes down? What direction should I move so that the wind blows more in a
northern direction? If I walk in this direction, will the wind keep pushing me in
the same direction? Will it get stronger or weaker?

Problem 6.9 Do the following for each of the functions below: Use Sage to check your work in
each part.

• Compute the partial derivatives and the total (matrix) derivative.

• Tell what the range and domain are (i.e., R? → R?).

• Write down the relationship between small changes in inputs and outputs
(in the form analagous to d~y = D~fd~x) and interpret this relationship
graphically.

1. The parametric surface ~r(u, v) = (u, v, u cos(v)). [Hint: compute partial
derivatives ~ru, ~rv and the total derivative D~r(u, v) (a 3-row by 2-column
matrix)].

2. The vector field ~F (x, y) = (−y, xe3y). [Hint: compute partial derivatives
~Fx and ~Fy and the total derivative D~F (x, y) (which is a 2-row by 2-column
matrix).]

3. The parametric curve ~r(t) = (t, cos t, sin t).

4. The parametric surface ~f(u, v) = (u2, v2, u− v).

5. The space transformation ~T (r, θ, z) = (r cos θ, r sin θ, z).

As you completed the problems above, did you notice any connections
between the size of the matrix and the size of the input and output vectors?
Make sure you ask in class about this. We’ll make a connection.

We’ve now seen that the derivative of z = f(x, y) is a matrix Df(x, y) =[
fx fy

]
. This means that Df is itself a function from R2 to R2 that has inputs

x and y and outputs fx and fy. Therefore we can draw Df as a 2d vector field.

Problem 6.10 Consider the function f(x, y) = y − x2. Check your work with Sage.

1. In the xy plane, please draw several level curves of f (maybe z = 0, z = 2,
z = −4, etc.) Write the height on each curve (so you’re making a contour
plot).

2. Compute the derivative Df (which we’ll think of as a vector field).

3. Pick 8 points in the xy plane that lie on the level curves you drew above. We’ll examine the connection
between the derivative and level
curves much more when we study
optimization later.

At these 8 points, add the vector given by the derivative evaluated at that
point. For example, at (0, 0), draw the vector Df(0, 0) = (0, 1), and at
the point (1, 1), draw the vector Df(1, 1) = (−2, 1). What do you observe
about the relationship between the vectors and the contour lines?

http://sagecell.sagemath.org/?z=eJwr0ijVKdO0BZE6pVrJ-cUaZZqavFy8XAVFmXklCkohGakKKalFmWWJJZllqQqZxUogySK9lMy0NA1NsGYAokcTpg==&lang=sage
http://sagecell.sagemath.org/?z=eJx1kE1uwjAQhfeRcoeRusARExRQWXoXcYF2h1rkBhuMjG3Zk0JuX9ukXVRi5zfv-Zsfxe44NXxq75-buuoVcFCro1aKNXXlkxqcJTeGgzeOmMIUb7e4bRDYNL-UNobvhIkSf9OR7zvcYPv6gWDElzSRv4dRzuLgPGlnIz_qgZi2RltZ_EQdrsLzxUXSIvWvqxfog7gBnSV8y4FcgF6xDrsGIolA2p5AULG905ageHnwJYcy8RzHR54X8Zy8xvVTcvb-kXPpj5zFTH47uwfZpwXHINO3VUy1fNMfMERspw==&lang=sage
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6.3 The Geometry of Derivatives

6.3.1 Tangent planes of z = f(x, y)

We promised earlier in this chapter that you can obtain most of the results in
multivariate calculus by replacing the x and y in dy = f ′dx with ~x and ~y. Let’s
review how to find the tangent line for functions of the form y = f(x), and then
generalize to finding tangent planes for functions of the form z = f(x, y).

Problem 6.11: Tangent Lines Consider the function y = f(x) = x2.

1. The derivative is f ′(x) =?. At the point x = 3 the derivative is f ′(3) =?
and the output y is y = f(3) =?.

2. If we move from the point (3, f(3)) to the point (x, y) along the tangent
line, then a small change in x is dx = x− 3. What is dy?

3. Differential notation states that a change in the output dy equals the
derivative times a change in the input dx, which gives us the equation
dy = f ′(3)dx. Replace dx, dy, and f ′(3) with what we know they equal, to
obtain an equation y−? =?(x−?). What line does this equation represent?

4. Draw both f and the equation from the previous part on the same axes.

In first semester calculus, differential notation says dy = f ′dx. A small
change in the inputs times the derivative gives the change in the outputs. For
the next problem, the output is z, and input is (x, y), which means differential

notation says dz = Df

[
dx
dy

]
.

Problem 6.12: Tangent Planes Let z = f(x, y) = 9− x2 − y2. See Sage for a picture.

See Larson 13.7:17–30 for more
practice.1. The derivative is Df(x, y) =

[
−2x ?

]
. At the point (x, y) = (2, 1), the

derivative is Df(2, 1) =
[
−4 ?

]
and the output z is z = f(2, 1) =?.

2. If we move from the point (2, 1, f(2, 1)) to the point (x, y, z) along the
tangent plane, then a small change in x is dx = x− 2. What are dy and
dz?

3. Explain why an equation of the tangent plane is We’ll construct a graph of f and
it’s tangent plane in class.

z − 4 =
[
−4 −2

] [x− 2
y − 1

]
or z − 4 = −4(x− 2)− 2(y − 1).

[Hint: What does differential notation tell us?]

Look back at the previous two problems. The first semester calculus tangent
line equation, with differential notation, generalized immediately to the tangent
plane equation for functions of the form z = f(x, y). We just used the differential

notation dy = f ′dx in 2D, and generalized to dz = Df

[
dx
dy

]
. Let’s repeat this

on another problem.

Problem 6.13 Let f(x, y) = x2 + 4xy+ y2. Give an equation of the tangent See Sage.

See Larson 13.7:17–30 for more
practice.

plane at (3,−1). [Hint: Just as in the previous problem, find Df(x, y), dx, dy,
and dz. Then use differential notation.]

https://sagecell.sagemath.org/?z=eJx9kUtvAiEYRff8CqImA8qYkUkTu2DdfbdNbSYMKOkIBFCH_voCPprax2YyX_Jx7uUg0UgiZo_1uKF13FBgA0OUrIjMX4wBmMqD5kEZDTvdQ2uUDsAyO5jQ9kiSdL5uSYsJipcfaGzHVYisWT5gYBesnEE2EMjNYByrnOgrAr36EIw2OQLygzsKX5Y71-1FcIq_5QyU-LlMZKkMgbe0b6iwU_xdC-9Zi-EUpt1fSZTERBoZLaR4R9o6IXSqdQdL67ngUfBgnAdyZHLZK5k4GMh4HeL5ojnmvIleVqQhciwWXzHxoXOBZQdf_PUtO4phMKfqJ6TJl49XCPyfYlynt6LKQu3QafGHznitNUdjTfHiwp-jWK_SdH73oropfpKp5u5d1yljF_YDmjyLHioPZ8n5jMCn7LDMSdtsgoHfmROy-BN9Vrcb
https://sagecell.sagemath.org/?z=eJx9kk-PwiAQxe_9FERNCu1oWusmXjjvfa8bNaQFJVsLAdSyn36havefuycCmfm9N28QuAdPaL9d5qusz3zut8tEO4ormJcghoOQJJmKU1c7qTrEugZpJTuXaDqcWDtAtWqVoanhTQrIyndOlwVJdE51q1zVYAFBqIAVAexhXkFJACnNauk8LRZPUQHVJ3Pmdmhihh25M7LexX4cegc3nkY3gO6sb7LuIOu3jltLK4KmKNY-ZFXgA6oPVZE0urmh9obzLszwgxbKo8Uzr50yNhE9FYtGisAhifD3ix9HxtdK_FoGp6K_5rghYB0zjsbEPgXWo7jnbasu6W9KAWF8P1LQ_xhlWLfnaQxVt6zjf0TqR2MZ7ucVye8KGfZ5Ga637X_J-9Hy1nCT1Sej20H24I4tnrzwBkmLZnETM0DPMdnhIYQ5m5DEHtQFa0DM6jDmzrDwv2gIrIRFuSEf2ELG4w
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6.3.2 Partial Derivatives of z = f(x, y) functions

We can also understand tangent lines to surfaces using partial derivatives. The
next problem will help you visualize what a partial derivative means in the
graph of a surface.

Problem 6.14 Consider the function f(x, y) = 9− x2 − y2. Construct a 3D See Sage.

See Larson 13.3:53–58 for more
practice.

surface plot of f (see problem 4.8). We’ll focus on the point (2, 1).

1. Let y = 1 and construct a graph in the xz plane of the curve z = f(x, 1) =
9− x2 − 12. Find an equation of the tangent line to this curve at x = 2.
Write the equation in the form (z− z0) = m(x− x0) (find z0,m, x0). Also,
find a direction vector (1, 0, ?) for this line.

2. Let x = 2 and construct a graph in the yz plane of the curve z = f(2, y) =
9− 22 − y2. Find an equation of the tangent line to this curve at y = 1.
Write the equation in the form (z − z0) = m(y − y0) (find z0,m, y0). Also,
find a direction vector (0, 1, ?) for this line.

3. Compute fx and fy and then evaluate each at (2, 1). What does this have
to do with the previous two parts?

4. If the slope of a line y = mx+ b is m, then we know that an increase of
1 unit in the x direction will increase y by m units. Fill in the blanks
by using the slopes of tangent lines calculated above for the function
z = f(x, y) = 9− x2 − y2.

• Increasing x by 1 unit when y does not change will cause z to increase

by about units.

• Increasing y by 1 unit when x does not change will cause z to increase

by about units.

• Increasing x by 1 unit and y by 1 unit will cause z to increase by

about units.

5. In the previous part, we said that z = 9 − x2 − y2 increased by about
a certain amount each time. Why did we not say that z = 9 − x2 − y2
increases by exactly that amount?

We’ll conclude this section with a note about taking derivatives of higher
orders. Since a partial derivative is a function, we can take partial derivatives of
that function as well. If we want to first compute a partial with respect to x,
and then with respect to y, we would use one of the following notations:

fxy =
∂

∂y

∂

∂x
f =

∂

∂y

∂f

∂x
=

∂2f

∂y∂x
.

Problem 6.15: Mixed Partials Agree Complete the following: See Larson 13.3:71–80 for more
practice.

1. Let f(x, y) = 3xy3 + ex. Compute the four second partials

∂2f

∂x2
,

∂2f

∂y∂x
,

∂2f

∂y2
, and

∂2f

∂x∂y
.

2. For f(x, y) = x2 sin(y) + y3, compute both fxy and fyx.

https://sagecell.sagemath.org/?z=eJxtjUEOgjAQRfecoiEktHEwWOLCxazdewAMgSKNQJu2idTT26IxatxMZjL_vd_TBTzDQ7HUvPA1TzTqUbmqoz2EV1FBxYD610KUblrpPJbbPUv0BrWSs6OUww76OBmDVo3KYG5El4OVd4G8fEYb00zCGdmeYwMN9gh5jBB5d5FP3g2yvc7CWqz-Ozj44FiQrw7_47gYIeYcyJcmGdw00vQkOiItyUJ_BuQYk-sdXFnKEjuoG9XsARLFVGs
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3. Make a conjecture about a relationship between fxy and fyx. Then use
your conjecture to quickly compute fxy if

f(x, y) = 3xy2 + tan2(cos(x))(x49 + x)1000.

Clairaut’s theorem implies that if a function f is “nice”—if f and its partial
derivatives and second partials are defined and continuous around a point (a, b),
then fxy = fyx at that point. We will be dealing with nice functions of this sort
in this class, so we will have this relationship between fxy and fyx.

Problem 6.16 Let z = f(x, y) = 9− x2 − y2. We’ll look at the point (2, 1),
like above.

1. Compute fxx, fyy, fxy, and fyx at the point (2, 1).

2. How do you interpret each of those second partials graphically on this
function?

6.3.3 Partial derivatives of parametric functions

Now let’s examine computations similar to those in Problem 6.14 in the light of
parametric surfaces. With parametric functions, partial derivatives are vectors
instead of just numbers. But they still represent how the outputs change relative
to changes in the inputs.

Problem 6.17 Let z = f(x, y) = 9 − x2 − y2. We’ll parameterize this See Sage for a picture.

See Larson 15.5:35–38 for more
practice.

function by writing x = x, y = y, z = 9 − x2 − y2, or in vector notation we’d
write

~r(x, y) = (x, y, f(x, y)).

1. Compute
∂~r

∂x
and

∂~r

∂y
. Then evaluate these partials at (x, y) = (2, 1).

What do these vectors mean? [Hint: Draw the surface, and at the point
(2, 1, 4), draw these vectors. See the Sage plot. Think about how the
vectors are telling you about how changes in the inputs are related to
changes in the outputs.]

2. The vectors above are tangent to the surface. Use them to obtain a normal
vector to the tangent plane, and then give an equation of the tangent
plane. (You should compare it to your equation from problem 6.12.)

If the vectors you found in the previous problem matched up with the
direction vectors of the lines in Problem 6.14, you are doing things right. Partial
derivatives of parametric functions tell us tangent directions. We can interpret
this also in terms of motion.

Problem 6.18 Consider the change of coordinates ~T (r, θ) = (r cos θ, r sin θ).

1. Compute the partial derivatives
∂ ~T

∂r
and

∂~r

∂θ
, and then state the derivative Use Sage to check your work.

D~T (r, θ). [Hint: D~T is a 2 by 2 matrix, and each partial derivative is a
column. Use Sage to check your answer (see the link to Sage in the margin
of Problem 6.9 for help with how to do this)]

2. Consider the polar point (r, θ) = (4, π/2):

http://en.wikipedia.org/wiki/Symmetry_of_second_derivatives#Clairaut.27s_theorem
https://sagecell.sagemath.org/?z=eJx9kUtvAiEYRff8CqImA8qYkUkTu2DdfbdNbSYMKOkIBFCH_voCPprax2YyX_Jx7uUg0UgiZo_1uKF13FBgA0OUrIjMX4wBmMqD5kEZDTvdQ2uUDsAyO5jQ9kiSdL5uSYsJipcfaGzHVYisWT5gYBesnEE2EMjNYByrnOgrAr36EIw2OQLygzsKX5Y71-1FcIq_5QyU-LlMZKkMgbe0b6iwU_xdC-9Zi-EUpt1fSZTERBoZLaR4R9o6IXSqdQdL67ngUfBgnAdyZHLZK5k4GMh4HeL5ojnmvIleVqQhciwWXzHxoXOBZQdf_PUtO4phMKfqJ6TJl49XCPyfYlynt6LKQu3QafGHznitNUdjTfHiwp-jWK_SdH73oropfpKp5u5d1yljF_YDmjyLHioPZ8n5jMCn7LDMSdtsgoHfmROy-BN9Vrcb
http://sagecell.sagemath.org/?z=eJwL0SjSKclILUnUtNUo0krOL9aA8HQUirSKM_OgPE1eLl6ugqLMvBIFpZCMVIWU1KLMssSSzLJUhcxiJZBkiF5KZlqahibcOADvtxuX&lang=sage
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(a) Compute T (4, π/2) (i.e., the x, y coordinates for the polar point).
Draw the point.

(b) Compute
∂ ~T

∂r
(4, π/2), i.e., the partial with respect to r evaluated

at r = 4, θ = π/2. Plot this vector on the graph you drew in the
previous part, starting at the point you drew.

(c) Compute
∂ ~T

∂θ
(4, π/2), i.e., the partial with respect to θ evaluated

at r = 4, θ = π/2. Plot this vector on the graph you drew in the
previous part, starting at the point you drew.

3. If you were standing at the polar point (4, π/2) and someone said, “Hey
you, keep your angle constant, but increase your radius,” then which
direction would you move? What if someone said, “Hey you, keep your
radius constant, but increase your angle”, which direction would you move?

4. Now change the polar point to (r, θ) = (2, 3π/4). Try, without doing any
computations, to repeat part 2 (at the point draw both partial derivatives
vectors). Explain.

If your answers to the 2nd and 3rd part above were the same, then you’re
doing this correctly. The partial derivatives of parametric functions tell us about
motion and tangents. The next problem reinforces this concept. But first, a
short review about equations of lines.

Review If you know that a line passes through the point (1, 2, 3) and is
parallel to the vector (4, 5, 6), give a vector equation, and parametric equations,
of the line. See 1 for an answer.

Problem 6.19 Consider the parametric surface ~r(a, t) = (a cos t, a sin t, t)
for 2 ≤ a ≤ 4 and 0 ≤ t ≤ 4π. We encountered this parametric surface in
chapter 5 when we considered a smoke screen left by multiple jets.

1. Compute the partial derivatives ~ra and ~rt (they are vectors), and state
the total derivative. (How big is the matrix? What is the domain and
range of ~r?)

2. Look at a plot of the surface (use one of the links to the right). Now, Please see Sage or Wolfram Alpha
for a plot of the surface. Click on
either link.

suppose an object is on this surface at the point ~r(3, π) = (−3, 0, π). At
that point, please draw the partial derivatives ~ra(3, π) and ~rt(3, π).

3. If you were standing at ~r(3, π) and someone told you, “Hey you, hold t
constant and increase a,” then in which direction would you move? What
if someone told you, “Hey you, hold a constant and increase t”?

4. Give vector equations for two tangent lines to the surface at ~r(3, π). [Hint:
You’ve got the point by plugging (3, π) into ~r, and you’ve got two different
direction vectors from D~r. Once you have a point and a vector, we know
(from chapter 2) how to get an equation of a line.]

In the previous problem, you should have noticed that the partial derivatives
of ~r(a, t) are tangent vectors to the surface. Because we have two tangent vectors
to the surface, we should be able to use them to construct a normal vector to
the surface, and from that, a tangent plane. That’s just cool.

1A vector equation is ~r(t) = (4, 5, 6)t+ (1, 2, 3) or ~r(t) = (4t+ 1, 5t+ 2, 6t+ 3). Parametric
equations for this line are x = 4t+ 1, y = 5t+ 2, and z = 6t+ 3.

https://sagecell.sagemath.org/?z=eJxL0yjRUUjUtNVI1ErOL9Yo0QTytIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBaAOAx0FE62CTKASjUQdBSMgT1OTCwBCiRSf
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%28a+cos+t%2C+a+sin+t%2C+t%29+for+t+from+0+to+4+pi+and+a+from+2+to+4
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Review If you know that a plane passes through the point (1, 2, 3) and has
normal vector (4, 5, 6), then give an equation of the plane. See 2 for an answer.

Problem 6.20 Consider again the parametric surface ~r(a, t) = (a cos t, a sin t, t)
for 2 ≤ a ≤ 4 and 0 ≤ t ≤ 4π. We’d like to obtain an equation of the tangent
plane to this surface at the point ~r(3, 2π). Once you have a point on the plane,
and a normal vector to the surface, we can use the concepts in chapter 2 to get
an equation of the plane. Give an equation of the tangent plane.

[Hint: To get the point, what is ~r(3, 2π)? The partial derivatives at (3, 2π)
give us two tangent vectors. How do I obtain a vector orthogonal to both?]

Problem 6.21 Consider the cone parametrized by ~r(u, v) = (u cos v, u sin v, u).See Sage.

See Larson 15.5:35–38 for more
practice.1. Give vector equations of two tangent lines to the surface at ~r(2, π/2) (so

u = 2 and v = π/2).

2. Give a normal vector to the surface at ~r(2, π/2).

3. Give an equation of the tangent plane at ~r(2, π/2).

We now have two different ways to compute tangent planes. One way

generalizes differential notation dy = f ′dx to dz = Df

[
dx
dy

]
and then uses matrix

multiplication. This way will extend to tangent objects in EVERY dimension.
It’s the key idea needed to work on really large problems. The other way requires
that we parametrize the surface z = f(x, y) as ~r(x, y) = (x, y, f(x, y)) and then
use the cross product on the partial derivatives. Both give the same answer.
The next problem has you give a general formula for a tangent plane. To tackle
this problem, you’ll need to make sure you can use symbolic notation. The
review problem should help with this.

Review Joe wants to to find the tangent line to y = x3 at x = 2. He knows
the derivative is y = 3x2, and when x = 2 the curve passes through 8. So he
writes an equation of the tangent line as y − 8 = 3x2(x − 2). What’s wrong?
What part of the general formula y − f(c) = f ′(c)(x− c) did Joe forget? See 3

for an answer.

Problem 6.22: Tangent Plane General Formula Consider the function

z = f(x, y). Explain why an equation of the tangent plane to f at (x, y) = (a, b)
is given by

z − f(a, b) =
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − a).

Then give an equation of the tangent plane to f(x, y) = x2 + 3xy at (3,−1).
[Hint: Use either differential notation or a parametrization, or try both ways.]

2An equation of the plane is 4(x− 1) + 5(y − 2) + 6(y − 3) = 0. If (x, y, z) is any point in
the plane, then the vector (x− 1, y − 2, z − 3) is a vector in the plane, and hence orthogonal
to (4, 5, 6). The dot product of these two vectors should be equal to zero, which is why the
plane’s equation is (4, 5, 6) · (x− 1, y − 2, z − 3) = 0.

3Joe forgot to replace x with 2 in the derivative. The equation should be y− 8 = 12(x− 2).
The notation f ′(c) is the part he forgot. He used f ′(x) = 3x2 instead of f ′(2) = 8.

https://sagecell.sagemath.org/?z=eJx9kM1uwjAQhO95ihUgxQ4uhbSVevG5954rVZZjwMLY1voH0aevEwhEFerJu9buN7ODJLFMOUmNdIFkyiA1QdtLRSsfudEhEiQt8_q5pbSq5ttkZdTOgrAdeKdtrDwfXuIjA-mMQ16j6moGQf8o3q4Lacm9QHFUEbX89sYVKIOivmavRYvkUkDbeF0a54XU8czXq7deD2TCrMJDBMl88DVBTfXjXsuDVSHwFwpzuAw_BiXejj6uNq6gHSplyyl_WGW-95aVjA5DhYnjqtPbLSmxYR6bfLl8kEhjiCxEgZH3Yd2h7zfBszLGnerJZr5twv-rDoXdqbpPzRth1aNTU3N3sszNFD5mWFJ42rANZVesT-jNgN3HoyGzT9WBDrDI_KvfXDD46EMa_kouixmtwt6diKe_OvC8aA
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6.4 The Chain Rule

We’ll now see how the chain rule generalizes to all dimensions. Just as before,
we’ll find that the first semester calculus rule will generalize to all dimensions if
we replace f ′ with the matrix Df . Let’s recall the chain rule from first-semester
calculus.

Theorem 6.F (The Chain Rule). Let x be a real number and f and g be
functions of a single real variable. Suppose f is differentiable at g(x) and g is
differentiable at x. The derivative of f ◦ g at x is

(f ◦ g)′(x) =
d

dx
(f ◦ g)(x) = f ′(g(x)) · g′(x).

Some people remember the theorem above as “the derivative of a composition
is the derivative of the outside (evaluated at the inside) multiplied by the

derivative of the inside.” If u = g(x), we sometimes write
df

dx
=

df

du

du

dx
. The

following problem should help us master this notation.

Problem 6.23 Suppose we know that f ′(x) =
sin(x)

2x2 + 3
and g(x) =

√
x2 + 1.

Notice we don’t know f(x). Not knowing a function f is
actually quite common in real life.
We can often measure how
something changes (a derivative)
without knowing the function
itself.

1. State f ′(x) and g′(x).

2. State f ′(g(x)), and explain the difference between f ′(x) and f ′(g(x)).

3. Use the chain rule to compute (f ◦ g)′(x).

We now generalize to higher dimensions. If I want to write ~f(~g(~x)), then
~x must be a vector in the domain of g. After computing ~g(~x), we must get
a vector that is in the domain of f . Since the chain rule in first semester
calculus states (f(g(x))′ = f ′(g(x))g′(x), then in high dimension it should state
D(f(g(x)) = Df(g(x))Dg(x), the product of two matrices.

Problem 6.24 In problem 6.5, we showed that for a circular cylinder with
volume V = πr2h, the derivative is

DV (r, h) =
[
2πrh πr2

]
.

Suppose that the radius and height are both changing with respect to time,
where r = 3t and h = t2. We’ll write this parametrically as ~g(t) = (3t, t2) (i.e.,
~g(t) = (r, h)).

1. In V = πr2h, replace r and h with what they are in terms of t. Then

compute
dV

dt
. This is a first-semester calculus derivative; we’ll use it to

check our work below.

2. We know DV (r, h) =
[
2πrh πr2

]
and Dg(t) =

[
3
2t

]
. In first semester

calculus, the chain rule was the product of derivatives. Multiply these
matrices together to get

dV

dt
= DV (g(t))D(r, h)(t).

Did you get the same answer as the first part?
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3. To get the correct answer to the previous part, you had to replace r
and h with what they equaled in terms of t. What part of the notation
dV

dt
= DV (g(t))Dg(t) tells you to replace r and h with what they equal

in terms of t?

Let’s look at some physical examples involving motion and temperature, and
try to connect what we know should happen to what the chain rule states.

Problem 6.25 Consider f(x, y) = 9 − x2 − y2 and ~r(t) = (2 cos t, 3 sin t).
Imagine the following scenario. A horse runs around outside in the cold. The
horse’s position at time t is given parametrically by the elliptical path ~r(t). The
function T = f(x, y) gives the temperature of the air at any point (x, y).

1. At time t = 0, what is the horse’s position ~r(0), and what is the temperature
f(~r(0)) at that position? Find the temperatures at t = π/2, t = π, and
t = 3π/2 as well.

2. In the plane, draw the path of the horse for t ∈ [0, 2π]. Then, on the same If you end up with an ellipse and
several concentric circles, then
you’ve done this right.

2D graph, include a contour plot of the temperature function f . Make
sure you include the level curves that pass through the points in part 1,
and write the temperature on each level curve you draw.

3. As the horse runs around, the temperature of the air around the horse is This idea leads to an optimization
technique, Lagrange multipliers,
later in the semester.

constantly changing. At which t does the temperature around the horse
reach a maximum? A minimum? Explain, using your graph.

4. As the horse moves past the point at t = π/4, is the temperature of the

surrounding air increasing or decreasing? In other words, is
df

dt
positive or

negative? Use your graph to explain.

5. We’ll complete this part in class, but you’re welcome to give it a try
yourself. Draw the 3D surface plot of f . In the xy-plane of your 3D plot Instructor: See Sage.

(so z = 0) add the path of the horse. In class, we’ll project the path of the
horse up into the 3D surface.

Problem 6.26 Consider again f(x, y) = 9−x2−y2 and ~r(t) = (2 cos t, 3 sin t),
which means x = 2 cos t and y = 3 sin t.

1. At the point ~r(t), we’d like a formula for the temperature f(~r(t)). What
is the temperature of the horse at any time t? [In f(x, y), replace x and y
with what they are in terms of t.]

2. Compute df/dt (the derivative as you did in first-semester calculus).

3. Construct a graph of f(t) (use software to draw this if you like). From
your graph, at what time values do the maxima and minima occur?

4. What is df/dt at t = π/4?

5. Compare your work with the previous problem.

Problem 6.27 Consider again f(x, y) = 9−x2−y2 and ~r(t) = (2 cos t, 3 sin t).

1. Compute both Df(x, y) and D~r(t) as matrices. One should have two
columns. The other should have one column (but two rows).

https://sagecell.sagemath.org/?z=eJyFj0FuwjAQRfc-RXaMk0kV2WLBwrforoLKGEdYmNgaOyK5fU3oIqCq7N5i_pv_e5hw5mrXTgfRzgfBCDJXIGoTUiGsZJ3cUIgzFlX0IcsT9FhSrUTJEeZfqELUxuVZdR9bzmKjoiZ9tZmc-b7HwLuU4W7nzVcP9UJ7rCBjh6KOrihM8IHUhuxpg_nszGWwKSn5Vtf946meRCydww1iAROGHEZ6yP4atEiOmtQnjRa9PlqfFubNaxfC1Xc92cfdaoLAVSX-A1SMc_Q
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2. The temperature at any time t we can write symbolically as f(r(t)).
First semester calculus suggests the derivative should be the produce
(f(~r(t)))′ = f ′(~r(t))~r′(t). Write this using D notation instead of prime
notation.

3. Compute the matrix product DfD~r, and then substitute x = 2 cos t and
y = 3 sin t.

4. What is the change in temperature with respect to time at t = π/4? Is it
positive or negative? Compare with the previous problem.

The previous three problems all focused on exactly the same concept. The
first looked at the concept graphically, showing what it means to write (f ◦~r)(t) =
f(~r(t)). The second reduced the problem to first-semester calculus. The third
tackled the problem by considering matrix derivatives. In all three cases, we
wanted to understand the following problem.

If z = f(x, y) is a function of x and y, and both x and y are
functions of t (i.e., ~r(t) = (x(t), y(t))), then how do we discover how
do changes in t affect f? In other words, what is the derivative of f

with respect to t? Notationally, we seek
df

dt
which we formally write

as
d

dt
[f(x(t), y(t))] or

d

dt
[f(~r(t))].

To answer this problem, we use the chain rule, which is just matrix multiplication.

Theorem 6.G (The Chain Rule). Let ~x be a vector and ~f and ~g be functions

so that the composition ~f(~g(~x)) makes sense (we can use the output of g as an

input to f). Suppose ~f is differentiable at ~g(~x) and that ~g is differentiable at ~x.

Then the derivative of ~f ◦ ~g at ~x is

D(~f ◦ ~g)(~x) = D~f(~g(~x)) ·D~g(~x).

The derivative of a composition is equal to the derivative of the outside (evaluated
at the inside), multiplied by the derivative of the inside.

This is exactly the same as the chain rule in first-semester calculus. The only
difference is that now we have vectors above every variable and function, and
we replaced the one-by-one matrices f ′ and g′ with potentially larger matrices
Df and Dg. If we write everything in vector notation, the chain rule in all
dimensions is the EXACT same as the chain rule in one dimension.

Problem 6.28 Suppose that f(x, y) = x2 + xy and that x = 2t + 3 and See Larson 13.5:1–6 for more
practice (you can check answers in
the back of the book). Don’t use
the formulas on pages 925–930.
Instead, use matrix multiplication.
The formulas are just a way of
writing matrix multiplication
without writing down the matrices,
and only work for functions from
Rn → R. Our matrix
multiplication method works for
any function from Rn → Rm.

Instructor: In class, I also
replace x and y in f = x2 + xy
with what they are in terms of t,
and then use first-semester
calculus to find df/dt.

y = 3t2 + 4.

1. Rewrite the parametric equations x = 2t + 3 and y = 3t2 + 4 in vector
form, so we can apply the chain rule. This means you need to create a

function ~r(t) = ( , ).

2. Compute the derivatives Df(x, y) and D~r(t), and then multiply the ma-

trices together to obtain
df

dt
. How can you make your answer only depend

on t (not x or y)?

3. The chain rule states that D(f ◦ ~r)(t) = Df(~r(t))D~r(t). Explain why we
write Df(~r(t)) instead of Df(x, y).
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If you’d like to make sure you are correct, try the following. Replace x and y in
f = x2 + xy with what they are in terms of t, and then just use first-semester
calculus to find df/dt. Is it the same?

Problem 6.29 Suppose f(x, y, z) = x+ 2y+ 3z2 and x = u+v, y = 2u−3v, See Larson 13.5:7–10 for more
practice (remember to use matrix
multiplication, not the formulas
from the book).

and z = uv. Our goal is to find how much f changes if we were to change u (so
∂f/∂u) or if we were to change v (so ∂f/∂v). Try doing this problem without
looking at the steps below, but instead try to follow the patterns in the previous
problem on your own.

1. Rewrite the equations for x, y, and z in vector form ~r(u, v) = (x, y, z).

2. Compute the derivatives Df(x, y, z) and D~r(u, v), and then multiply them
together. Notice that since this composite function has 2 inputs, namely
u and v, we should expect to get two columns when we are done.

3. What are ∂f/∂u and ∂f/∂v? [Hint: remember, each input variable gets a
column.]

Problem 6.30 Let ~F (s, t) = (2s+ t, 3s− 4t, t) and s = 3pq and t = 2p+ q2.

This means that changing p and/or q should cause ~F to change. Our goal is to

find ∂ ~F/∂p and ∂ ~F/∂q. Note that since ~F is a vector-valued function, the two
partial derivatives should be vectors. Try doing this problem without looking at
the steps below, but instead try to follow the patterns in the previous problems.

1. Rewrite the parametric equations for s and t in vector form.

2. Compute D~F (s, t) and the derivative of your vector function from part 1,

and then multiply them together to find the derivative of ~F with respect
to p and q. How many columns should we expect to have when we are
done multiplying matrices?

3. What are ∂ ~F/∂p and ∂ ~F/∂q?

Problem: Challenge Suppose ~F (u, v) = (3u− v, u+ 2v, 3v), ~G(x, y, z) =

(x2 + z, 4y − x), and ~r(t) = (t3, 2t+ 1, 1− t). We want to examine ~F (~G(~r(t)).

This means that ~F ◦ ~G ◦ ~r is a function from Rn → Rm for what n and m?
Similar to first-semester calculus, since we have two functions nested inside of
each other, we’ll just need to apply the chain rule twice. Our goal is to find
d~F/dt. Try to do this problem without looking at the steps below.

1. Compute D~F (u, v), D~G(x, y, z), and D~r(t).

2. Use the chain rule (matrix multiplication) to find the derivative of ~F with
respect to t. What size of matrix should we expect for the derivative?

Review Suppose f(x, y) = x2 + 3xy and (x, y) = ~r(t) = (3t, t2). Compute
both Df(x, y) and D~r(t). Then explain how you got your answer by writing
what you did in terms of partial derivatives and regular derivatives. See 4 for
an answer.
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Problem 6.31: General Chain Rule Formulas Complete the following: See Larson 13.5:7–10 for more
practice.

1. Suppose that w = f(x, y, z) and that x, y, z are all function of one variable
t (so x = g(t), y = h(t), z = k(t)). Use the chain rule with matrix
multiplication to explain why

dw

dt
=
∂f

∂x

dg

dt
+
∂f

∂y

dh

dt
+
∂f

∂z

dk

dt
.

which is equivalent to writing

dw

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

[Hint: Rewrite the parametric equations for x, y, and z in vector form
~r(t) = (x, y, z) and compute Dw(x, y, z) and D~r(t).]

2. Suppose that R = f(V, T, n, P ), and that V, T, n, P are all functions of x.

Give a formula (similar to the above) for
dR

dx
.

Problem 6.32 Suppose z = f(s, t) and s and t are functions of u, v and w. See Larson 13.5:19–26 for more
practice.

See Larson 13.5:7–10 for more
practice.

Use the chain rule to give a general formula for ∂z/∂u, ∂z/∂v, and ∂z/∂w.

Review If w = f(x, y, z) and x, y, z are functions of u and v, obtain formulas

for
∂f

∂u
and

∂f

∂v
. See 5 for an answer.

You’ve now got the key ideas needed to use the chain rule in all dimensions.
You’ll find this shows up many places in upper-level math, physics, and engineer-
ing courses. The following problem will show you how you can use the general
chain rule to get an extremely quick way to perform implicit differentiation from
first-semester calculus.

Problem 6.33 Suppose z = f(x, y). If z is held constant, this produces a To practice the idea developed in
this problem, show that if
w = F (x, y, z) is held constant at
w = c and we assume that
z = f(x, y) depends on x and y,

then ∂z
∂x

= −Fx
Fz

and ∂z
∂y

= −Fy
Fz

.

See Larson 13.5:27–30 for more
practice, and see pages 929–930
for how the book derives these
formulas.

level curve. As an example, if f(x, y) = x2 + 3xy − y3 then 5 = x2 + 3xy − y3
is a level curve. Our goal in this problem is to find dy/dx in terms of partial
derivatives of f .

4We have Df(x, y) =
[
2x+ 3y 3y

]
and D~r(t) =

[
3
2t

]
. We just computed fx and fy , and

dx/dt and dy/dt, which gave us Df(x, y) =
[
∂f/∂x ∂f/∂y

]
and D~r(t) =

[
dx/dt
dy/dt

]
.

5 We have Df(x, y, z) =

[
∂f

∂x

∂f

∂y

∂f

∂z

]
. The parametrization ~r(u, v) =

(x, y, z) has derivative D~r =


∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v
∂z

∂u

∂z

∂v

. The product is D(f(~r(u, v))) =

[
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
+
∂f

∂z

∂z

∂u

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v

]
. The first column is

∂f

∂u
, and the

second column is
∂f

∂v
.
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1. Suppose x = x and y = y(x), so y is a function of x. We can write this
in parametric form as ~r(x) = (x, y(x)). We now have z = f(x, y) and
~r(x) = (x, y(x)). Compute both Df(x, y) and D~r(x) symbolically. Don’t
use the function f(x, y) = x2 + 3xy − y3 until the last step.

2. Use the chain rule to compute D(f(~r(x))). What is dz/dx (i.e., df/dx)?

3. Since z is held constant, we know that dz/dx = 0. Use this fact, together

with part 2 to explain why
dy

dx
= −fx

fy
= −∂f/∂x

∂f/∂y
.

4. For the curve 5 = x2 + 3xy − y3, use this formula to compute dy/dx.



Chapter 7

Motion

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Develop formulas for the velocity and position of a projectile, if we neglect
air resistance and consider only acceleration due to gravity. Show how to
find the range, maximum height, and flight time of the projectile.

2. Develop the TNB frame for describing motion. Make sure you can explain
why ~T , ~N , and ~B are all orthogonal unit vectors, and be able to perform
the computations to find these three vectors.

3. Explain the concepts of curvature κ, radius of curvature ρ, center of
curvature, and torsion τ . Make sure you can describe geometrically what
theses quantities mean.

4. Find the tangential and normal components of acceleration. Show how to

obtain the formulas aT = d
dt |~v| and aN = κ|~v|2 = |~v|2

ρ , and explain what
these equations physically imply.

You’ll have a chance to teach your examples to your peers prior to the exam.
I have created a YouTube playlist to go along with this section. There are

11 videos, each 4-6 minutes long.

• YouTube playlist for 07 - Motion and The TNB Frame.

• A PDF copy of the finished product (so you can follow along on paper).

Table 7.1 summarizes most of the concepts we’ll discuss. The goal of this chapter
is to explain how the vectors in this table are related. You’ll also find this Sage
notebook (click on the link) can greatly speed up all the computations in this
chapter.

7.1 Projectile Motion

Have you ever dropped a rock from the top of a waterfall, or skipped a rock
across a lake. This section explores some simple connections between position,
velocity, and acceleration. If we wanted to send a rocket to space, or shoot a
missile across an ocean, the same principles will apply. If we know how much
thrust a rocket provides (the acceleration), can we determine the velocity of our
rocket at any time along its path? Could we predict the flight path of the rocket?
To make a good flight plan, we’d need to know how to determine position and
velocity from acceleration. That’s the content of this section.

60

http://www.youtube.com/playlist?list=PL30EE81142B1ED1F0&feature=plcp
http://db.tt/FmEGk9p5
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
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Quantity Symbol Formula

Position (“r”adial vector) ~r ~r(t) = (x(t), y(t), z(t))

Velocity ~v ~v(t) =
d~r

dt

Speed v =
ds

dt
v(t) = |~v(t)|

Acceleration ~a ~a(t) =
d~v

dt
=
d2~r

dt2
=

d

dt

d~r

dt

Unit Tangent Vector ~T
d~r

ds
=
d~r/dt

ds/dt
=

~r′(t)

|~r′(t)|

Curvature Vector ~κ
d~T

ds
=
d~T/dt

ds/dt
=
d~T/dt

|~v|
=

~T ′(t)

|~r′(t)|

Curvature (a scalar) κ

∣∣∣∣∣d~Tds
∣∣∣∣∣ =

∣∣∣∣∣d~T/dtds/dt

∣∣∣∣∣ =

∣∣∣d~T/dt∣∣∣
|~v|

=
|~T ′(t)|
|~r′(t)|

Curvature of y = f(x) κ(x) κ(x) =
|f ′′(x)|

(1 + (f ′)2)3/2
.

Principal unit normal vector ~N
d~T/dt

|d~T/dt|
=

~T ′(t)

|~T ′(t)|
=

1

κ

d~T

ds
=

1

κ|~v|
d~T

dt

Binormal vector ~B ~T × ~N

Radius of curvature ρ 1/κ

Center of curvature ~r(t) + ρ(t) ~N(t)

Torsion τ ±

∣∣∣∣∣d ~Bds
∣∣∣∣∣ (pick the sign) or −d

~B

ds
· ~N

Tangential Component of acceleration aT ~a · ~T =
d

dt
|~v|

Normal Component of acceleration aN ~a · ~N = κ

(
ds

dt

)2

= κ|~v|2

Acceleration (sum the components) ~a ~a = aT ~T + aN ~N =
(
d
dt |~v|

)
~T +

(
κ|~v|2

)
~N

Table 7.1: This table summarizes the key ideas in this unit. Most of our work
in this chapter will be to explain the connections between these variables.
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Review If y′(t) = 3t2 + 12e2t (the velocity) and y(0) = 2 (initial height),
then what is y(t)? See footnote 1 for an answer.

To solve the next problem, we need to remember that acceleration is the
derivative of velocity, and that velocity is the derivative of position. These facts
hold true for vector-valued functions as well.

Problem 7.1 Consider a rocket in space (so we can neglect air resistance and
gravity). The rocket’s boosters apply an acceleration ~a(t) = (2t,−8) m/s2. The
rocket’s initial velocity is ~v(0) = (4, 5) m/s. The initial position is ~r(0) = (1, 16)
m. Use this information to determine the position of the object after 2 seconds,
and after 3 seconds.

[Hint: Integrate each component to get velocity, then repeat to get position.
Don’t forget the 4 arbitrary constants you get from integration. Use the initial
velocity and initial position to determine these constants.]

Suppose we fire a projectile (like a pumpkin) from a cannon. The projectile
leaves the cannon with an initial speed v0, at an angle of α above the x-axis.
All the motion in this problem occurs with a plane, and we’ll use x and y to
represent motion in that plane. Our goal is to find the velocity ~v(t) and position
~r(t) of the projectile at any time t.

We need some assumptions prior to solving.

• Assume the only force acting on the object is the force due to gravity. We
will neglect air resistance.

• The force due to gravity is the mass of the projectile multiplied by the
acceleration of gravity. The mass of the object will not be important in
our work here, though in future classes you may study how mass affects
energy computations.

• The projectile is shot over a small enough range that we can assume
gravity only pulls the object straight down.

• Most branches of science use the letter g to represent the magnitude of
the vertical component of acceleration, so we can write the acceleration of
the projectile as

~a(t) = (0,−g) or ~a(t) = 0i− gj.

• Our text uses the approximations g ≈ 9.8 m/s2 or g ≈ 32 ft/s2.

You’ve probably heard before that when you throw a baseball to a friend,
the path of the baseball is parabolic. The next problem proves this. If you feel
shaky on getting a Cartesian equation from a parametrization, please tackle this
review problem, otherwise, jump straight to the problem.

Review The function ~r(t) = (2t+ 3, 4t2 + 7t+ 5) is a parametrization of a
plane curve. Give a Cartesian equation of the curve. See 2 for an answer.

Problem 7.2 Suppose a projectile is fired from the point (x0, y0) with an Watch a YouTube video.

initial velocity ~v(0) = (vx0
, vy0), and that gravity is the only force acting on the

object. This means the acceleration on the object is ~a(t) = (0,−g).

1Integrate to get y(t) = t3 + 6e2t + C. Since y(0) = 2, we know 2 = 0 + 6(1) + C, which
gives C = −4. So the height is y(t) = t3 + 6e2t − 4.

2Since t =
x− 3

2
, a Cartesian equation is y = 4

(
x− 3

2

)2

+ 7

(
x− 3

2

)
+ 5.

http://www.youtube.com/watch?v=dW0bm7cLB8E&list=PL30EE81142B1ED1F0&index=1&feature=plpp_video
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1. Show that the velocity at any time t is ~v(t) = (c1,−gt+ c2). What are c1
and c2? Explain

2. Show that the position at any time t is ~r(t) = (vx0
t+c3,− 1

2gt
2 +vy0t+c4).

What are c3 and c4?

3. Eliminate the parameter t to give a Cartesian equation of the projectile’s
path. This will prove that the path of the particle is parabolic.

If a projectile starts at (x0, y0), we can move the origin to this point. As long
as we are not trying to gauge the location of two projectiles simultaneously, we
could always make the origin (0, 0) our starting point. We make the following
definitions for a projectile that starts at (0, 0) and hits the ground at (R, 0).

• The range is the horizontal distance R traveled by the projectile.

• The flight time is how long the projectile is in the air. It is the time t at
which ~r(t) = (R, 0).

• The maximum height is the largest y value obtained by the projectile.

Problem 7.3 Answer the following questions. Assume we fire a projectile Watch a YouTube video.

from the origin, which means the acceleration, velocity, and position are

~a(t) = (0,−g), ~v(t) = (vx0
,−gt+ vy0), ~r(t) = (vx0

t,−1

2
gt2 + vy0t).

1. What’s the time to max height? What’s the flight time?

2. Show why the maximum height is ymax =
v2y0
2g

and the range is R =

2vx0
vy0
g

.

3. If the initial speed is v0, with a firing angle of α above the horizontal,
rewrite vx0

and vy0 in terms of v0 and α, and then state the range in terms
of v0 and α.

The next problem comes from your text. (See section 13.2.) Try it without
reading the text. It’s a fun application of the ideas above.

Problem 7.4 An archer stands at ground level and shoots an arrow at an This problem was created around
the opening ceremony of the
Barcelona Spain Olympics.
Antonio Rebollo was the archer,
but he didn’t try to hit the flame
at the peak of the flight. You can
watch a YouTube video of the
opening ceremony by following the
link.

object which is 90 feet away in the horizontal direction and 74 ft above ground.
The arrow leaves the bow at about 6 ft above ground level (not the origin). The
archer wants the arrow to hit the target at the peak of its parabolic path. For
the purposes of this problem, Let g = 32ft/s2. What initial speed v0 and firing
angle α are needed to achieve this result? [Hint: This is much easier to solve if
you first find vx0

and vy0 , the horizontal and vertical components of the velocity.
You may want to move the origin as well, so that you can use the formulas from
above.]

http://www.youtube.com/watch?v=a6PHAvynNWM&list=PL30EE81142B1ED1F0&index=2&feature=plpp_video
http://www.youtube.com/watch?v=b5gZeT4TVds
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7.2 Arc Length and the Unit Tangent Vector

Now that we’ve developed a way to predict position and velocity from accelera-
tion, let’s look more in depth at the actual path taken by a projectile. We’ll
need to be able to compute the actual distance an object travels (not the dis-
placement, but the distance). This requires that we study arc length. We did
this in chapter’s 3 and 4 for curves in the plane.

Review A horse runs once around an elliptical track, which is parametrized
by ~r(t) = (3 cos t, 4 sin t). Set up, do not solve, an integral formula that tells us
the distance the horse traveled. What’s the displacement? See 3 for an answer.

Let’s now develop a formula for the arc length of a space curve, a curve in
3D. We can always parameterize a space curve with ~r(t) = (x, y, z) (one input,
3 outputs).

Problem 7.5 A space ship travels through the galaxy. Let ~r(t) = (x, y, z) Watch a YouTube video.

be the position of the space ship at time t, with the earth at the origin (0, 0, 0). Technically, we should write
~r(t) = (x(t), y(t), z(t)). However,
we already know that x, y, and z
depend on t, hence we’ll just leave
the dependence on t off.

• What are the velocity and speed of the space ship at time t? You answers
should involve some derivatives (such as dx

dt ).

• If the space ship travels for a really small time dt, then the speed is about
constant. Since distance is speed times time, about how much distance
(we’ll call it ds) will the space ship travel in this short amount of time?

• As the ship travels from time t = a to time t = b, explain why the distance
traveled (the arc length of the path followed) is

s =

∫ b

a

|~r′(t)| dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

In all our work that follows, we want to consider space curves that have nice
smooth paths. What does this mean? We want to be able to compute tangent
vectors at any point, so we will require that a parametrization ~r be differentiable.
However, this isn’t enough.

Problem 7.6 We’ve encountered the polar curve r = 1 − sin θ before (we
called it a cardioid, and it looked like heart). Recall that we can switch from polar
to Cartesian using the coordinate transformation x = r cos θ and y = r sin θ.

1. Draw the curve.

2. A parametrization of this curve is ~r(θ) = ((1 − sin θ) cos θ, ?). This

parametrization is completely differentiable. Find
d~r

dθ
.

3. You should notice a sharp cusp in the graph. At what θ does this cusp

occur? What is the value of the derivative
d~r

dθ
at this value of θ.

3The velocity is ~v(t) = (3 sin t,−4 cos t). The speed is v(t) =
√

9 sin2 t+ 16 cos2 t. The

distance traveled is the arc length s =

∫ 2π

0

(√
9 sin2 t+ 16 cos2 t

)
dt. Since the horse’s initial

and final position are equal, the displacement is zero. Arc length does not equal displacement.

http://www.youtube.com/watch?v=jZpAU2T6iI4&list=PL30EE81142B1ED1F0&index=3&feature=plpp_video
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We’d like to avoid paths that contain a cusp, because at a cusp the direction
of motion changes rather abruptly. This can happen physically, but it requires
the speed of an object to reach zero, the object stops moving, and then the
path changes direction. The fact that the speed reaches zero will mean we can’t
divide by it in our work that follows. To avoid this, we make a definition that
requires the path is differentiable, and the velocity is never zero.

Definition 7.A: Smooth Curves. Let ~r(t) = (x, y, z) be a parametrization of
a space curve C. We say that ~r is smooth if ~r is differentiable, and the derivative
is never the zero vector. If ~r is a smooth parameterization, then we call C a
smooth curve.

Problem 7.7 Consider the helical space curve C with parameterization Watch a YouTube Video.

~r(t) = (cos t, sin t, t).

1. Is C a smooth curve?

2. Find the length of this space curve for t ∈ [0, 2π]. Compute any integrals.

3. Now find the length of the space curve from t = 0 to time t = t.

4. Give a vector of length 1 that is tangent to the curve at t = 2π.

In the previous problem, you developed two big ideas. You showed how to
obtain a unit tangent vector to a curve. You also developed a formula for the
length of a curve from time t = 0 to any time t = t. This gives us a function
s(t) that tells us how far we have traveled after t seconds. We can now predict
distance traveled from time. Predicting the future is powerful. Before moving
on, let’s examine the derivative of s(t), because it’s a quantity we already know.

Review Compute

∫ t

0

3x2dx and

∫ t

0

3p2dp and

∫ t

0

3τ2dτ . Does it matter

what you call the variable inside the integral? Then compute
d

dt

∫ t

0

3τ2dτ . See

4 for an answer.

Problem 7.8 Let ~r(t) = (x, y, z) be a parametrization of a smooth space You can remember
ds

dt
=

∣∣∣∣d~rdt
∣∣∣∣ as

follows. We use the differential ds
to represents a change in distance,
and dt represents a change in time.
So the speed of an object is the
change in distance ds over the
change in time dt.

curve. Let s(t) =

∫ t

0

∣∣∣∣d~rdτ
∣∣∣∣ dτ . Explain why

ds

dt
=

∣∣∣∣d~rdt
∣∣∣∣, the speed. Then explain

why s(t) is an increasing function.
[Hint: Look up the fundamental theorem of calculus. To answer why is s

increasing, what does “smooth” mean?]

We’ll call s(t) =

∫ t

0

∣∣∣∣d~rdτ
∣∣∣∣ dτ the arc length parameter. It tells us how far

we’ve have traveled after t seconds. We can now predict distance traveled from
time elapsed. Because s(t) is an increasing function, we can also invert this
process and give time elapsed from distance traveled. This means we could
compute derivatives with respect to s instead of t. When we take a derivative

4 The first integral is x3|t0 = t3. The other two are the same. You can change the variable
inside the integral whenever you want. For this reason, some people call it a dummy variable.

The last part is
d

dt

∫ t

0
3τ2dτ =

d

dt
t3 = 3t2, we just replaced τ with t in 3τ2.

http://www.youtube.com/watch?v=m25oxYTfXfU&list=PL30EE81142B1ED1F0&index=4&feature=plpp_video
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with respect to s, we ask how much a curve changes if we increase length by 1
unit, instead of increasing time by 1 unit. We’ll write

d~r

ds
=
d~r/dt

ds/dt
=

d~r/dt

|d~r/dt|
=
~v

v
.

Problem 7.9 Consider again the helical space curve ~r(t) = (cos t, sin t, t).

We’ve shown that s(t) = t
√

2.

1. Solve for t in terms of s (so find the inverse of s(t)). If you’ve traveled 4
units of distance, how much time has elapsed.

2. Compute D~r(t) and Dt(s). You should have a 2 by 1 matrix, and a 1 by
1 matrix.

3. Use the chain rule to compute the derivative of ~r(t(s)).

4. Compute the length

∣∣∣∣d~rds
∣∣∣∣.

The previous problem motivates the following definition.

Definition 7.B: Unit Tangent Vector. Let ~r(t) be a parametrization of a

smooth space curve. We define the unit tangent vector ~T (t) to be the derivative
of ~r with respect to arc length, which means

~T =
d~r

ds
=
d~r/dt

ds/dt
=

d~r/dt

|d~r/dt|
=

~v

|~v|
.

This is exactly the same as unit vector in the same direction as the velocity.

As we progress through this unit, one of our key goals is to learn the new
notation. We’ve got position ~r, velocity ~v, speed v or ds/dt, acceleration ~a,

the unit tangent vector ~T , the derivative of position with respect to arc length
d~r/ds. The last two are the exact same since ~T = d~r/ds. Did you also notice
that ds/dt and v are both the speed? We’ll need to start realizing that the same
quantity can be developed in many ways.

Problem 7.10 Suppose an object moves along the space curve given by
~r(t) = (a cos t, a sin t, bt).

1. Find the object’s velocity and speed. What is ds/dt?

2. Compute d~r
ds , the derivative of ~r with respect to arc length. Leave your

answer in terms of t.[Hint: Divide the top and bottom by dt and then
compute d~r/dt and ds/dt.]

3. State the unit tangent vector ~T (t).

As we progress in this chapter, we’ll be computing more derivatives with
respect to s, instead of t. Did you notice in the previous problem that to
compute a derivative with respect to s, you just compute the regular derivative
with respect to t, and then divide by the speed. Please do the following review
problem to make sure you’ve got down what d

ds means.
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7.3 Some Examples and The TNB Frame

Imagine that you are at a park with some kids (a nephew, a daughter, etc.). The
park has a merry-go-round where the kids can sit down, hold on, and then spin
in circles. As the spinning speed increases, they’ll feel a greater force trying to
throw them outwards. To stay on the merry-go-round, they have to counteract
this outward acceleration with their own inward acceleration. For the next few
examples, let’s examine the connections between ~v, ~a, ~T , d~T/dt, d~T/ds, and

|d~T/ds| in the context of spinning around on a merry-go-round. These few
examples are enough to develop just about the entire chapter.

Review Suppose ~r(t) = (3 cos t, 3 sin t, 4t). Compute v, ds/dt, d~r/ds, ~T , and

d~T/ds. See 5 for an answer.

Problem 7.11 Sammy sits on a merry go round. He sits 3 feet from the
center of the merry ground, and lets his big sister spin him around. We can
parameterize Sammy’s path with the vector equation ~r(t) = (3 cos t, 3 sin t),
where t is in seconds. The point (0, 3) corresponds to the time t = π/2.

1. Draw the curve for 0 ≤ t ≤ 2π. Compute ~v and ~a. At (0, 3) (so t = π/2),
draw these two vectors. Are these two vectors orthogonal?

2. Compute ~T and
d~T

dt
. At (0, 3), draw these two vectors. Are these two

vectors orthogonal?

3. Compute
d~T

ds
and

∣∣∣∣∣d~Tds
∣∣∣∣∣. How is the length of

d~T

ds
related to the circle?

Problem 7.12 Sammy’s older sister grabs another friend to help push the
merry-go-round. The spinning speed doubles. If we replace t with 2t in our
parameterization, we get the exact same path, but traverse it twice as fast.
Sammy’s path is now parametrized by ~r(t) = (3 cos 2t, 3 sin 2t).

1. Draw the curve. How long does it take to go around once? Note that
t = π/4 now corresponds to (0, 3).

2. Compute ~v, ~a, ~T ,
d~T

dt
,
d~T

ds
, and

∣∣∣∣∣d~Tds
∣∣∣∣∣. At (0, 3), add the vectors to your

picture.

3. Compute
d~T

ds
and

∣∣∣∣∣d~Tds
∣∣∣∣∣. How is the length of

d~T

ds
related to the circle?

5 We have ~v =
d~r

dt
= (−3 sin t, 3 cos t, 4). The speed is

ds

dt
= |~v| =√

9 sin2 t+ 9 cos2 t+ 16 = 5. We then compute
d~r

ds
=
d~r/dt

ds/dt
=

1

5
(−3 sin t, 3 cos t, 4), which

equals ~T . We finally compute

d~T

ds
=
d~T/dt

ds/dt
=

(
1

ds/dt

)
d~T

dt
=

(
1

5

)
1

5
(−3 cos t,−3 sin t, 0) =

1

25
(−3 cos t,−3 sin t, 0).
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Look back at the previous two problems. We computed ~v, ~a, ~T ,
d~T

dt
,
d~T

ds
,

and

∣∣∣∣∣d~Tds
∣∣∣∣∣ in each. Which of these changed when we changed the speed? Which

stayed the same? The next problem has you develop this.

Problem 7.13 We started with the parameterization ~r(t) = (3 cos t, 3 sin t),
and replaced t with 2t to double the speed.

1. Now replace t with 5t and compute ~v, ~a, ~T ,
d~T

dt
,
d~T

ds
, and

∣∣∣∣∣d~Tds
∣∣∣∣∣. Evaluate

each at t = π
10 , the time corresponding to point (0, 3).

2. Replace t with ωt and find ~v, ~a, ~T ,
d~T

dt
,
d~T

ds
, and

∣∣∣∣∣d~Tds
∣∣∣∣∣. Evaluate each at

t = π
2ω , the time corresponding to point (0, 3).

3. At (0, 3), which of these 6 quantities remain the same?

We started with motion on a circle with a relatively simple speed. We then Gauss developed and expanded
many of the ideas in this section
while on a map making mission
for a king. He wanted to create
extremely high quality 2D images
of the 3D world we are in. I will
be seeking for a good reference to
put here for further study.

doubled the speed, multiplied the speed by 5, and then chose a variable speed.
You should have noticed that at the same point on the curve, regardless of speed,

the quantities ~T ,
d~T

ds
, and

∣∣∣∣∣d~Tds
∣∣∣∣∣ remained the same. Will this pattern continue

if we were to change from constant speeds to variable speeds? What if we left
the path of a circle, and moved to any smooth curve? How far can we take

this pattern? Is it true always? If so, then the quantities ~T ,
d~T

ds
, and

∣∣∣∣∣d~Tds
∣∣∣∣∣ are

pretty important quantities that describe the curve we’re on.

Because
d~T

ds
and

∣∣∣∣∣d~Tds
∣∣∣∣∣ show up a lot, let’s give them a definition.

Definition 7.C: Curvature κ and The Curvature Vector ~κ. Let ~r(t) be
a smooth curve (so that ~v is never zero).

• The vector ~κ =
d~T

ds
we’ll call the curvature vector. It measures how quickly

the unit tangent vectors changes as we increase in length (not time).

• The number κ =

∣∣∣∣∣d~Tds
∣∣∣∣∣ we’ll call the curvature.

Let’s apply this new definition to a circle of any radius. We’ll quickly see
that the curvature and radius of a circle are related. The curvature vector d~T/ds

tells us how quickly ~T changes as we increase in length, which is a measure
of how sharply we turn a corner. If our curve is a circle of radius 3, then the
curvature is 1/3. A larger circle should result in smaller curvature.

Problem 7.14 Consider the curve ~r(t) = (a cos t, a sin t).

1. Draw the curve, and state the radius ρ of the best approximating circle.

2. Find the curvature ~κ by performing a computation.
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3. What relationship exists between ρ and κ? If the radius ρ were to increase,
what would happen to κ?

For any curve, we could approximate how rapidly the curve turns at a point
by drawing a circle that best approximates the curve (kind of like a Taylor
polynomial, only now we’ll use a circle.) We want the circle to meet the curve
~r tangentially, and we want the curvature of the circle to match the curvature
of the curve. Since the curvature of the circle must match the curvature of the
curve, we know they are inverse related. This gives the following definition.

Definition 7.D: Radius of Curvature. When the curvature κ of a smooth Watch a YouTube Video.

curve is nonzero, we’ll define the radius of curvature, written ρ, to be the

reciprocal ρ =
1

κ
. The curvature and radius of curvature are inversely related.

Let’s now look at what happens if we change the speed in a nonlinear way.
For simplicity, let’s replace t with t2. You could pick any other change. If you
are confident with your product rule, then please do the first review problem. If
you need to remember how to show vectors are orthogonal, do the second.

Review Suppose f(x) = sin(x2). Compute f ′(x) and f ′′(x). See 6.

Review Show that (−2, 3, 1) and (4, 2, 2) are orthogonal. See 7.

Problem 7.15 The big kids pushing Sammy on the merry-go-round decide
to constantly increase the spinning rate. To parametrize Sammy’s path, let’s
replace t with t2 in the original parametrization to obtain ~r(t) = (3 cos t2, 3 sin t2).
Fill in the missing values below, and then answer the questions that follow.

~v (−6t sin
(
t2
)
, 6t cos

(
t2
)
)

ds/dt 6t

~a

~T
(
− sin

(
t2
)
, cos

(
t2
))

d~T/dt
(
−2t cos

(
t2
)
,−2t sin

(
t2
))

~κ = d~T/ds

κ = |d~T/ds| 1
3

1. Show that ~v and ~a are not orthogonal, but that ~T and d~T/dt are.

2. To get to (0, 3), we could have t2 = π/2 or t2 = 2π + π/2 or many other

values. Show that ~T is the same at (0, 3), regardless of what time we pass

through (0, 3). Show the same is true for d~T/ds.

3. When the speed is ds
dt = 6 (so t = 1), how long are d~T/dt and d~T/ds?

When the speed is ds
dt = 12 (so t = 2), how long are d~T/dt and d~T/ds?

When the speed is ds
dt = 30 (so t = 5), how long are d~T/dt and d~T/ds? If

the speed were some random number v, how long are d~T/dt and d~T/ds?

6 We have f ′(x) = 2x cos(x2) and f ′′(x) = −4x2 sin(x2) + 2 cos(x2).
7The dot product of these two vectors is (−2, 3, 1) · (4, 2, 2) = −8 + 6 + 2 = 0. Because the

dot product is zero, the vectors are orthogonal.

http://www.youtube.com/watch?v=cHez5K1EWPs&list=PL30EE81142B1ED1F0&index=8&feature=plpp_video
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Observation 7.E. The previous problem showed the following patterns.

• The vectors ~v and ~a are not always orthogonal.

• The vectors ~T and
d~T

dt
are always orthogonal.

• The vectors ~T and
d~T

ds
are independent of speed. They depend only on

the shape of the curve, not the speed at which you traverse the curve.

• If we multiply
d~T

ds
by

ds

dt
, we’ll get

d~T

dt
. The two vectors point in the same

direction, which from here on out we’ll call ~N , the direction normal to the
motion.

Let’s see if this pattern continues when we swap to a different curve. Rather
than try to connect the curve to some physical real world example, let’s look
at a curve we are familiar with, a parabola. If the pattern holds there as well,
then we may have found a key pattern that works with all curves. Then we can
take our new knowledge and apply it to ANYTHING (like space flight, roller
coasters, missiles, and anything that moves).

If you want to perform the computations below by hand, you must master
the product, quotient, and chain rule, as well as working with rational exponents
in algebra. Feel free to try the computations by hand (if you can get them, then
well done). Please use Sage to do the computations below.

Problem 7.16 Consider the curve ~r(t) = (t, t2). The computations get Use the Sage link.

intense, so let’s use a computer algebra system, such as Sage (follow this link)
to help us. If we don’t use a computer, we could spend hours on this problem.
The computer will do all the computations, and give graphs, in seconds.

1. Use this Sage link to compute ~v, ~a,
ds

dt
, ~T ,

d~T

dt
,
d~T

ds
,

∣∣∣∣∣d~Tds
∣∣∣∣∣, and the unit

vector ~N that is orthogonal to ~T . Evaluate each at t = 1 and t =
√

3/2
(use “sqrt(3)/2”). Record your answers in the provided table.

2. Let’s now double the speed at which we traverse along the curve. Replace
t with 2t, and then repeat the problem above. However, instead of putting
in t = 1 and t =

√
3/2, we now need to use t = 1/2 and t =?. Use Sage to

record your answers in the provided table.

3. After completing the table, does Observation 7.E still hold?

4. How are ~T and ~N related? Conjecture a pattern.

http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
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Value
~r(t) = (t, t2) ~r(t) = (2t, (2t)2)

at t = 1 at t =
√

3/2 at t = 1/2 at t =?

~r (1, 1) (3/4, 3/4) (1, 1) (3/4, 3/4)

~v (1, 2)

~a (0, 2)

ds
dt

√
5

~T (
√
5
5 ,

2
√
5

5 )

d~T
dt (− 4

√
5

25 ,
2
√
5

25 )

~κ = d~T
ds (− 4

25 ,
2
25 )

κ =
∣∣∣d~Tds ∣∣∣ 2

√
5

25

~N (− 2
√
5

5 , 1
√
5

5 )

Our observation still holds. Let’s try it on one more curve in 3D, but this
time something we can do by hand.

Problem 7.17 Consider the helix ~r(t) = (4 cos t, 4 sin t, 3t). Compute ~v, ~T , Because the speed is constant,
many of the computations are
simplified. You can use the Sage
link to check your work.

d~T

dt
, and

d~T

ds
. Then do the following:

1. Show that ~T and
d~T

dt
are orthogonal. (Do this for any time t.)

2. At t = 2π, compute ds/dt, ~T ,
d~T

dt
, and

d~T

ds
.

3. Let’s slow down how quickly we travel along the curve. Replace t with

t/5. Then at t = 10π, give ds/dt, ~T ,
d~T

dt
, and

d~T

ds
for the new curve

~r2(t) = (4 cos( t5 ), 4 sin( t5 ), 3( t5 )).

4. Give a unit vector that points in the same direction as
d~T

dt
or

d~T

ds
.

The observation still holds. It looks like we’ve found some key facts that
pertain to any curve. We only have 3 examples to justify our conclusion, but
it’s enough to make some definitions and then seek for a concrete proof that
holds for every smooth curve.

Let’s prove one of the facts above, namely that ~T and its derivative will
always be orthogonal. The key here is that ~T is a vector of constant length.

Theorem 7.F. If a vector valued function ~r(t) has constant length, then the

vector ~r and its derivative
d~r

dt
are always orthogonal. Vector valued functions of

constant length are orthogonal to their derivative.

Problem 7.18: Proof of Theorem 7.F Prove the theorem above. Here Watch a YouTube Video.

are some hints [as an alternative to watching the YouTube video].

• We know that ~r(t) has constant length, so we write |~r| = c for some
constant c.

http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://www.youtube.com/watch?v=08Ygw_M-4yM&list=PL30EE81142B1ED1F0&index=6&feature=plpp_video
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• We need to get from a magnitude to a dot product. Look in your text for
a way to relate magnitude to the dot product. See problem 2.15.

• After writing |~r(t)| = c in terms of a dot product (squaring both sides
may help), take the derivative of both sides. Apply the product rule to
the dot product.

The above fact is so crucial, that we’ll repeat what it says.

If the vector ~v(t) has constant length, then the vector and its deriva-
tive d~v

dt are orthogonal.

Problem 7.19 Let ~r be a smooth parametrization of a curve. How long is Watch a YouTube Video.

the unit tangent vector ~T (t)? Explain why ~T is orthogonal to
d~T

dt
. Then give a

formula for computing a unit vector that is orthogonal to ~T (t).

Based on our answer above, let’s make the following definition of the principle
unit normal vector. The key idea is that this vector points in the direction of
normal acceleration.

Definition 7.G: Principle Unit Normal Vector. Suppose ~r(t) is a smooth

parametrization of a space curve, where the unit tangent vector is ~T (t). We

define the principle unit normal vector ~N(t) to be the vector

~N(t) =
d~T/dt

|d~T/dt|
,

provided of course that |d~T/dt| 6= 0. From problem 7.19 we know that ~T and ~N
are orthogonal.

The vector ~N is a unit vector in the same direction as the curvature vector.

Since
d~T

dt
and

d~T

ds
point in the same direction, we could have written ~N =

d~T/ds

|d~T/ds|
=
~κ

κ
.

The vectors ~T and ~N give us exactly the pieces needed to describe velocity
and acceleration. We’ll visit this more in a bit. When we are in 3D, these two
vectors describe a plane. The binormal vector of the TNB frame is the normal
vector to this plane.

Definition 7.H: Binormal Vector. If ~r is a parametrization of a smooth
space curve with unit tangent vector ~T and principle unit normal vector ~N ,
then we define the binormal vector ~B to be the cross product

~B = ~T × ~N.

It’s normal to both ~T and ~N , hence called the binormal vector.

We now have the entire TNB frame. This gives us a moving collection of
unit vectors that act like an xyz coordinate system. Many of you will use this
frame a ton in your dynamics course. The TNB frame shows up in physical
chemistry as well. A key fact to remember is that all three vectors are unit
vectors, and they are each orthogonal to the other.

http://www.youtube.com/watch?v=aJttU3kS_p8&list=PL30EE81142B1ED1F0&index=7&feature=plpp_video
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Review Find the area of a parallelogram with corners (0, 0, 0), (1, 0, 2), and
(1, 1, 3), and (2, 1, 5). See 8.

Problem 7.20 Answer the following questions (this will review your knowl-
edge of the dot and cross products).

1. What is ~T · ~N? Explain. Then explain why ~T · ~B = 0 and ~N · ~B = 0.

2. Both ~T and ~N are unit vectors. They are also orthogonal. Why is ~B is a
unit vector? [What’s the connection between the cross product and area.]

3. We defined ~B = ~T × ~N . This means that ~N × ~T = − ~B. Do we have ~T × ~B
equal to ~N or − ~N? Explain. [Hint: What does the right hand rule say?

Compare to î× k̂. ]

Let’s carry through a single problem where we compute ~T , ~N , and ~B.

Problem 7.21 Consider the helix ~r(t) = (3 cos t, 3 sin t, 4t). Find the unit

tangent vector ~T (t), principle unit normal vector ~N(t), and the binormal vector
~B(t).

Once the speed is no longer constant, things get a lot messier than the previous
problem. Ask me in class to show you what happens with the computations
when you consider something like r(t) = (t, t2, t3). Things get ugly really fast.
Fortunately, when you’re working with a curve that lies in a plane, there are
some simplifications that occur.

Problem 7.22 Suppose you have already computed the unit tangent vector

for a curve in the plane and found at a specific time it equals ~T = (a, b).

1. State a nonzero vector that is orthogonal to (a, b). (Guess one, and use
the dot product to check. If you’re struggling because of the variables,
find a vector orthogonal to (2, 3).)

2. Let ~r(t) = (t, t2). We then have d~r
dt = (1, 2t) and ~T (t) = (1,2t)√

1+4t2
. Without

computing any more derivatives, guess the principle unit normal vector
~N(t)?

3. Draw a picture of the curve. At t = 1 add to your picture the tangent
vector (1, 2)/

√
5 and your guessed normal vector. (If your guess was off

by a sign, tell us how to modify your guess.)

4. Why does ~B = (0, 0, 1)?

Observation 7.I. From the problem above, we learn the following fact. If the
tangent vector to a planar curve is ~T (t) = (a(t), b(t)), then the principle unit

normal vector is either ~N(t) = (−b(t), a(t)) or ~N(t) = (b(t),−a(t)). You just
reverse the components, and then negate one of them. To determine which one
to negate, draw a picture.

8 We find area of a parallelogram by the vectors that form the edges. Since one point is
the origin (subtracting it from the 2nd and 3rd points won’t change anything), we compute
the cross product (1, 0, 2)× (1, 1, 3) = (−2,−1, 1). The magnitude of the cross product is the
area A =

√
4 + 1 + 1 =

√
6.
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Problem 7.23 Consider the curve ~r(t) = (t2, t). Compute ~T (t). Reverse

the order and negate one of the component to find ~N(t). To know if you guessed
the write component to negate, draw the curve and on your graph include these
vectors at t = 1. Finally, state ~B(t).

Problem 7.24 Consider the curve y = sinx, parametrized by r(t) = (t, sin t).

We know that ~T (t) =
(1, cos t)√
1 + cos2 t

. Draw the curve from −π to π. Then on your

graph draw ~T and ~N at t = π/2, π/4, −π/4.

1. What is ~T (t) at each of t = π/2, π/4, −π/4?

2. Show how to get ~N(t) at each of t = π/2, π/4, −π/4?

3. What is ~B(t) at each of t = π/2, π/4, −π/4? What happens if t = 0?

You’ve now developed the TNB frame for describing motion. Engineers will
see this again when they study dynamics. Mathematicians who study differential
geometry will use these ideas as well. Any time you want to analyze the forces
acting on a moving object, the TNB frame may save the day. Chemists will
encounter the TNB frame briefly when they study P-chem and the motion of
subatomic particles.

Problem 7.25 Consider the curve ~r(t) = (t, sin 3t). We can compute ~v(t) =

(1, 3 cos t) and ~T (t) = (1,3 cos 3t)√
1+9 cos2(3t)

. Using the quotient rule, we find that

dT

dt
=

√
1 + 9 cos2(3t)(?, ?)− (1, 3 cos 3t)(?)

1 + 9 cos2(3t)
.

1. Fill in the blanks in the quotient rule above.

2. Show at t = π/6 that d~T/dt = (0,−9). Then state ~κ, κ, and ρ at t = π/6. Use this Sage link to check your
work, and see if your picture is
correct. You’ll have to type the
appropriate function in, so use
“[t,sin(3*t)]” and “point=pi/6.”

3. Draw the curve ~r(t) and on your curve at t = π/6 add the circle of
curvature.

4. Where is the center of curvature (the center of the best approximating
circle) at t = π/6.

Review If you are standing at (2, 1,−3) and you wish to move 6 units in
the direction of the unit vector (1/3, 2/3,−2/3), where are you? See 9 for an
answer.

Problem 7.26 Consider the helix ~r(t) = (t, sin t, cos t). Find the curvature Use this Sage link to check your
work, and see if your picture is
correct. You’ll have to type the
appropriate function in, so use
“[t,sin(t),cos(t)]” and
“point=pi/2.”

and radius of curvature t = π/2. Then draw the curve, and draw the circle of
curvature at t = π/2. Finally, find the center of curvature at t = π/2. Guess
the center of curvature at t = π? [Hint: If you’re struggling with how to get
from the curve to the center of curvature, please do the review problem above.]

9We want to start at (2, 1,−3) and move 6(1/3, 2/3,−2/3) = (2, 4,−4). We just add the
vectors, giving (4, 5,−7).

http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
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When a civil engineering team builds a road, they have to pay attention to
the curvature of the road. If the curvature of the road is too large, accidents
will happen and the civil engineering team will be liable. How do they make
sure the curvature never gets to large? They use the circle of curvature. When
they want to cause a road to turn, they’ll find the center of curvature, send a
surveyor out to the center, and then have the surveyor make sure that the road
follows the circle of curvature for a short distance. They actually pace out the
circle of curvature and then build the road along this circle for a hundred feet
or so. Then, they recompute the radius of curvature (if they need the direction
to change again), and pace out another circle. In this way, they can guarantee
that the curvature never gets large. In the next section we’ll see how curvature
is directly related to normal acceleration (which is what causes semis to tip, and
vehicles to slide off icy roads.)

7.4 Tangential And Normal Components

The unit tangent vector ~T provides us with a unit vector in the direction of
motion. We can obtain the direction of motion from the velocity. If we stay on
a straight course, then our acceleration is in the same direction as our motion,
and would only cause us to speed up or slow down. We’ll call this tangential
acceleration.

If we want to design a roller coaster, build an F15 fighter plane, send a
satellite in orbit, or construct anything that doesn’t move in a straight line, we
need to understand how acceleration causes us to leave a straight path. We may
still be speeding up or slowing down (tangential acceleration), but now we’ll
have a component that veers us off the straight path. We’ll call this normal
acceleration, it’s orthogonal to the velocity.

Back in the vector chapter, we practiced writing a force ~F as the sum of
the component parallel to a displacement ~d and the component orthogonal to
~d. We could write this as ~F = ~F|| to ~d + ~F⊥ to ~d. The parallel part came from

a projection. The orthogonal part came from vector subtraction. If you’ve
forgotten how to do this, please do this review problem.

Review Consider the force vector ~F = (0,−10), and displacement vector
~(2,−1). Compute the projection of ~F onto ~d, and then write ~F as the sum of a

vector parallel to ~d and a vector orthogonal to ~d. See 10.

If we throw a pebble from a 64 ft tall cliff, then we could parameterize the path
after t seconds using ~r(t) = (3t, 64− 16t2). The numbers below get rather large
in a hurry, so let’s use a simpler parameterization to gain understanding about
the connection between ~v, ~a, ~T , and ~N . Sometimes the key to understanding is
to simplify the problem.

Problem 7.27 Consider the parameterization ~r(t) = (t, 9− t2) (it’s a sim-
plified version of tossing a pebble off a building). Our goal, at time t = 1, is to

write ~a in the form ~a = aT ~T + aN ~N. Follow the steps below.

10 The projection is proj~d
~F = 10

5
(2,−1) = (4,−2). This is the parallel component

~F|| to ~d = (4,−2). To get the orthogonal component, we know that ~F = ~F|| to ~d + ~F⊥ to ~d
.

Vector subtraction gives ~F⊥ to ~d
= ~F − ~F|| to ~d = (0,−10)− (4,−2) = (−4,−8). We now write

~F = (4,−2) + (−4,−8).
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1. Compute ~v, ~a, and ~T at time t, and then at time t = 1. Then at t = 1,
compute the projection of ~a onto ~T , i.e. compute proj~T (1) ~a(1).

2. State ~N(t) (remember you can flip the order and change a sign), and then
at t = 1 compute proj ~N(1)~a(1).

3. If we write ~a = aT ~T + aN ~N , then what are aT and aN?

Definition 7.J: Tangential and Normal Components of Acceleration.
Suppose that ~r(t) is a smooth parametrization of a moving object. Let ~T be the
unit tangent vector. The tangential component of acceleration and the normal
component of acceleration are the scalars aT and aN that we obtain by writing
the acceleration as the sum of a vector parallel to T and a vector orthogonal to
~T , i.e. the scalars that satisfy

~a = aT ~T + aN ~N.

Let’s return to the example of Sammy on a merry-go-round. From this
example, we’ll see one of the key ideas in this section.

Problem: Optional, we already basically did this Suppose that Sammy

sits ρ feet away from the center of the merry-go-ground. His sister decides to spin
him around at different speeds. Let ~r(t) = (ρ cosωt, ρ sinωt) be a parametriza-
tion of Sammy’s postion.

1. Show that Sammy’s speed is |~v| = ρω.

2. Find the curvature of Sammy’s path at any time t (it happens to be
constant - and we did this already when we computed the curvature along
a circle).

3. Find the acceleration vector, and show that |~a| = κ|~v|2 =
|~v|2

ρ
.

In the problem above, all of the acceleration is in the normal direction. The

interesting thing to note is that the normal acceleration is ALWAY aT = |~v|2
ρ .

That’s what we’ll now show. We’ll show that the acceleration of an object
moving along a curve ~r(t) with velocity ~v(t) is the sum

~a(t) = aT ~T + aN ~N =
d

dt
|~v(t)|~T + κ|~v|2 ~N.

The scalars aT =
d

dt
|~v(t)| and aN = κ|~v|2 are the tangential and normal Engineers often use the equivalent

formula aN =
|~v|2
ρ

, as ρ is a

physical distance that they can
measure.

components of acceleration. All we have to do is write the vector ~a(t) as the

sum of a vector parallel to ~T and a vector orthogonal to ~T .
Before we decompose the acceleration into its tangential and normal compo-

nents, let’s look at two examples to see what these facts physically represent.

Problem 7.28 Imagine that you are riding as a passenger on a road and
encounter a series of switchbacks (so the road starts to zigzag up the mountain).
Right before each bend in the road, you see a yellow sign that tells you a U-turn
is coming up, and that you should reduce your speed from 45 mi/hr to 15 mi/hr.
Assume the largest curvature along the turn is κ. Recall that aN = κ|~v|2. The
engineers of the road designed the road so that if you are moving at 15 mi/hr,
then the normal acceleration will be at most A units.
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1. Suppose that your driver (Ben) ignores the suggestion to slow down to 15
mi/hr. He keeps going 45 mi/hr through the turn. Had he slowed down,
the max acceleration would be A. You’re traveling 3 times faster than
suggested. What will your maximum normal acceleration be? [It’s more
than 3A.]

2. You yell at Ben to slow down (you don’t want to die). So Ben decides
to only slow to 30 mi/hr. He figures this means you’ll only feel twice as
much acceleration as A. Explain why this line of reasoning is flawed.

3. Ben gets frustrated by the fact that he has to slow down. He complains
about the engineers who designed the road, and says, “they should have
just built a larger corner so I could keep going 45.” How much larger
should the radius of the circle be so that you can travel 45 mi/hr instead
of 15 mi/hr, and still feel the same acceleration A?

4. Which will cause the normal acceleration to decrease more, halving your
speed or halving the curvature (doubling the radius)?

Problem 7.29 Prove that ~a(t) = aT ~T + aN ~N =
d

dt
|~v|~T + κ|~v|2 ~N. Here’s Watch a YouTube Video.

some hints.

• Rewrite the velocity ~v as a magnitude |~v| times a direction ~T , so ~v = |v|~T .

• We know that ~a(t) = d
dt~v(t). Take the derivative of ~v = |~v|~T by using the

product rule (on the scalar product |~v|~T ).

• You should encounter the quantity d~T/dt. We know that d~T
dt = |~v|d~Tds .

Why does d~T/dt = |~v|κ ~N?

• Conclude to explain why aN = κ|~v|2.

Let’s now use the fact above to get an extremely useful formula for the
curvature.

Problem: Optional Show that

κ =
|~v × ~a|
|~v|3

=
|~r′ × ~r′′|
|~r′|3

.

[Hint: We know that ~a = aT ~T + aN ~N =
d

dt
|~v|~T + κ|~v|2 ~N. Cross both sides

with ~v. You should be able to cancel ~v × ~v (why). Then take the magnitude of

each side and solve for κ. You’ll have to explain why |~v × ~N | = |~v|.]

We can use the above formula for curvature to get a quick way to compute
the curvature of a function y = f(x). If you use the previous problem, this
formula falls out almost instantly. You’d see this formula in dynamics, and it
shows up on the Fundamentals of Engineering exam (where you just have to
use the formula, not prove where it comes from). This is the culminating idea
from this chapter that you’ll use again and again in engineering courses.

http://www.youtube.com/watch?v=cSh2Bdd-yTg&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video
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Problem: Optional The function y = f(x) can be given the parametriza-

tion ~r(x) = (x, f(x)). Use this parametrization (and the previous problem) to
show that the curvature is

κ(x) =
|f ′′(x)|

(1 + (f ′)2)3/2
,

and that the radius of curvature is

ρ(x) =
(1 + (f ′)2)3/2

|f ′′(x)|
.

7.4.1 Torsion

Definition 7.K: Torsion. Let ~r(t) be a parametrization of a smooth curve C

with unit tangent vector ~T (t). The derivative of ~B with respect to s tells us how

rapidly the plane containing ~T and ~N rotates. We’ll define the torsion vector to
be Watch a YouTube Video.

~τ =
d ~B

ds
=
d ~B/dt

ds/dt
=
d ~B/dt

|d~r/dt|
.

The torsion τ , up to a sign, is the length of this vector. We say there is positive
torsion if ~τ causes a counterclockwise rotation about ~T (as you look down ~T ),

which occurs precisely when ~tau and ~N point in opposite directions. We can
summarize this is

τ =

∣∣∣∣∣d ~Bds
∣∣∣∣∣ or τ = −

∣∣∣∣∣d ~Bds
∣∣∣∣∣ ,

where you choose “+” if ~N and ~τ point in opposite directions.

The computations involved in getting τ require a lot of work. Let’s use the
computer to help us. You can do all of this with the aid of Sage. I’ll let you
decide from the code what τ is. That will be your decision to make.

Problem 7.30 Consider the helix r(t) = (3 cos t, 3 sin t, 4t). In problem 7.21
we found

~T = (−3

5
sin t,

3

5
cos t,

4

5
)

~N = (− cos t,− sin t, 0)

~B = (
4

5
sin t,−4

5
cos t,

3

5
)

Compute the torsion vector ~τ =
d ~B

ds
, and then give the torsion τ (you’ll need

to determine the speed). Is the torsion positive or negative. Ask me in class
to show you how you would be able to determine this physically (without any
computations).

Problem 7.31 Consider the helix r(t) = (4 sin t, 4 cos t, 3t). Use a computer

to find ~T , ~N , ~B, ~κ, and ~τ . State your answers. (This sage link will help.) Use
your answers to then give κ and τ . (When you present on the board, just write
down the 5 vectors, and then explain how you obtained κ and τ from these
vectors. If you follow the link, this is mostly already done for you. )

http://www.youtube.com/watch?v=MVtUc2peJn0&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video
http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator
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In the examples above, you should have noticed that ~τ was either parallel to
~N or anti-parallel to ~N . Let’s now show this is always the case. The key is to
use the product rule on the cross product, together with some key fact about
the cross product.

Review What is the cross product of (1, 2, 3) and (2, 4, 6)? If two vectors
are parallel, then what is their cross product? In particular, what is the cross
product of ~N and ~κ? See 11 for an answer.

Problem 7.32 Suppose a curve ~r(t) has the frame ~T (t), ~N(t), and ~B(t). Watch a YouTube Video.

Prove that
d ~B

ds
is either parallel to ~N , or points opposite ~N . Here are some

steps.

• Why is
d ~B

ds
orthogonal to ~B? [Hint: How long is ~B? See Theorem 7.F.]

• We know ~B = ~T × ~N . Compute the derivative of both sides using the

product rule and explain why d~T
ds × ~N cancels out. Then explain why

d ~B

ds
is orthogonal to ~T .

• If
d ~B

ds
is orthogonal to both ~B and ~T why must it be either parallel or

anti-parallel to ~N?

11The cross product of parallel vectors is always the zero vector (0, 0, 0). This is because
the area of the parallelogram formed using the parallel vectors is always zero. So all three
answers are (0, 0, 0).

http://www.youtube.com/watch?v=MVtUc2peJn0&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video


Chapter 8

Line Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe how to integrate a function along a curve. Use line integrals to
find the area of a sheet of metal with height z = f(x, y) above a curve
~r(t) = (x, y) and the average value of a function along a curve.

2. Find the following geometric properties of a curve: centroid, mass, center
of mass, inertia, and radii of gyration.

3. Compute the work (flow, circulation) and flux of a vector field along and
across piecewise smooth curves.

4. Determine if a field is a gradient field (hence conservative), and use the
fundamental theorem of line integrals to simplify work calculations.

You’ll have a chance to teach your examples to your peers prior to the exam.
Table 8.1 contains a summary of the key ideas for this chapter.

Arclength s =
∫
C
ds =

∫ b
a

∣∣d~r
dt

∣∣ dt
Surface Area σ =

∫
C
dσ =

∫
C
fds =

∫ b
a
f
∣∣d~r
dt

∣∣ dt
Average Value f̄ =

∫
fds∫
ds

Work, Flow, Circulation W =
∫
C
dWork =

∫
C

(~F · ~T )ds =
∫
C
~F · d~r =

∫
C
Mdx+Ndy

Flux Flux =
∫
C
dFlux =

∫
C
~F · ~nds =

∮
C
Mdy −Ndx

Mass m =
∫
C
dm =

∫
C
δds

Centroid (x̄, ȳ, z̄) =
( ∫

xds∫
C
ds
,
∫
yds∫
C
ds
,
∫
zds∫
C
ds

)
Center of Mass (x̄, ȳ, z̄) =

( ∫
xdm∫
C
dm
,
∫
ydm∫
C
dm
,
∫
zdm∫
C
dm

)
Fund. Thm of Line Int. f(B)− f(A) =

∫
C
~∇f · d~r

Table 8.1: A summary of the ideas in this unit.

I have created a YouTube playlist to go along with this chapter. Each video
is about 4-6 minutes long.
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• YouTube playlist for 08 - Line Integrals.

• A PDF copy of the finished product (so you can follow along on paper).

You’ll also find the following links to Sage can help you speed up your time spent
on homework. Thanks to Dr. Jason Grout at Drake university for contributing
many of these (as well as being a constant help with editing, rewriting, and
giving me great feedback). Thanks Jason.

• Sage Links

• Mathematica Notebook (If you have installed Mathematica)

8.1 Area

Instructor: I draw and cut out
the area between a curve and the
axis on a sheet of paper and draw
a representative rectangle on it.
We talk about the single-variable
way to find area and label the
rectangle and label it with f(x)
and dx and dA = f(x)dx. Then I
draw a curve on the whiteboard
and put the x-axis of my sheet on
the curve to show how we now are
computing an area above a curve.
Students see how the dx becomes
ds, and how dσ = f(x, y)ds. Then
we do the problem below and
show the Sage graph.

In first-semester calculus, we learned that the area under a function f(x)

above the x-axis is given by A =
∫ b
a
f(x)dx. The quantity dA = f(x)dx

represents a small bit of area whose length is dx and whose height is f(x). To
get the total area, we just added up the little bits of area, which is why

A =

∫
dA =

∫ b

a

f(x)dx.

Now we want to generalize this

Problem 8.1 Consider the surface in space that is below the function

Watch a YouTube video.

See Sage for a picture of this
sheet.

f(x, y) = 9−x2−y2 and above the curve C parametrized by ~r(t) = (2 cos t, 3 sin t)
for t ∈ [0, 2π]. Think of this region as a metal plate that has been stood up with
its base on C where the height above each spot is given by z = f(x, y).

1. Draw the curve C in the xy-plane. If we cut the curve up into lots of tiny See Problem 6.25

segments, each having length ds. Explain why the length of each segment
is approximately

ds =
√

(−2 sin t)2 + (3 cos t)2dt.

[Hint: think of the particle moving around the curve, and a tiny segment
being the path of the particle over a small time interval dt. Distance
traveled in a small segment is rate (i.e., speed) multiplied by time.]

2. We let σ be the area of the metal sheet that lies above C and under f . We’ll use σ (a lower-case Greek
letter “sigma”) to stand for
surface area.

Explain why σ is given by the integral

σ =

∫
C

fds =

∫ 2π

0

(9− (2 cos t)2 − (3 sin t)2)
√

(−2 sin t)2 + (3 cos t)2dt.

You’ll need to explain why a little bit of surface area dσ is dσ = fds.

3. Find the surface area σ of the metal sheet. [Use technology to do this This Sage worksheet will compute
the integral.integral.]

Our results from the problem above suggest the following definition.

Definition 8.A: Line Integral. Let f be a function and let C be a piecewise The line integral is also called the
path integral, contour integral, or
curve integral.

smooth curve whose parametrization is ~r(t) for t ∈ [a, b]. We’ll require that
the composition f(~r(t)) be continuous for all t ∈ [a, b]. Then we define the line
integral of f over C to be the integral∫

C

fds =

∫ b

a

f(~r(t))
ds

dt
dt =

∫ b

a

f(~r(t))

∣∣∣∣d~rdt
∣∣∣∣ dt.

http://www.youtube.com/playlist?list=PL04DF68E73B7ECD54
http://db.tt/dAFBcMB7
http://bmw.byuimath.com/dokuwiki/doku.php?id=sage_links
https://content.byui.edu/file/3e8d885f-db47-4e74-9e04-c3d72627c835/1/_zips/215-Tech-Introduction.zip
http://www.youtube.com/watch?v=sYsMcqtXBrc&list=PL04DF68E73B7ECD54&index=1&feature=plpp_video
https://sagecell.sagemath.org/?z=eJx1j8EOgyAQRO98hTeBroniqQe-pFFjECupFQJro39ftPXQxN5mknk7sz1dYGXymi21yNZaEE-RSSq4siEqSEoezBQVI-jb6a4lRchBcGcY8UU0c4xv0C2vINlFUcHMe8o3Ezk1-5durENjpyA7o5AqO1ovU6-7FHAw6jHpEGT5zQbpWt8-NXqjGjdapHtRHtd8NgDnP0fZ5RQoGPzJkzBojSc1B0Dn-GRxjA-XPf8GnQ5jSA
https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
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Notice that this definition suggests the following four steps. These four steps
are the key to computing any line integral. When we ask you to set up a line

integral, it means that you should
do steps 1–3, so that you get an
integral with a single variable and
with bounds that you could plug
into a computer or complete by
hand.

1. Start by getting a parametrization ~r(t) for a ≤ t ≤ b of the curve C.

2. Find the speed by computing the velocity
d~r

dt
and then the speed

∣∣∣∣d~rdt
∣∣∣∣.

3. Multiply f by the speed, and replace each x, y, and/or z with what it
equals in terms of t.

4. Integrate the product from the previous step. Practice doing this by hand You should use the Sage line
integral calculator to check all
your answers.

on every problem, unless it specifically says to use technology. Some of
the integrals are impossible to do by hand.

Problem 8.2 Do the following line integrals. Check your answers with Sage.

Instructor: These quick
problems help the students get the
hang of line integrals and practice
parametrizing curves.

1. Consider the function f(x, y) = 3xy + 2. Let C be a circle of radius 4
centered at the origin. Compute

∫
C
fds. [You’ll have to come up with

your own parameterization.]

The big idea behind integrals is that we are adding up a bunch of small
quantities (above, it was dσ = fds) to get a total quantity (surface area). In
line integrals, we add up the value of f weighted by a length ds =

∣∣d~r
dt

∣∣ dt. This
concept can be extended to curves that are more than just plane curves.

Problem 8.3 Do the following integrals

1. The principles of line integrals apply even if the curve is not a 2d curve.
Let f(x, y, z) = x2 + y2 − 2z and let C be two coils of the helix ~r(t) =
(3 cos t, 3 sin t, 4t), starting at t = 0. Remember that the parameterization
means x = 3 cos t, y = 3 sin t, and z = 4t. Compute

∫
C
fds. [You will

have to find the end bound yourself. How much time passes to go around
two coils?]

2. Let f(x, y, z) = x2 + 3yz. Let C be the straight line segment from (1, 0, 0) If you’ve forgotten how to
parametrize line segments, see 2.9.to (0, 4, 5). Compute

∫
C
fds.

Problem 8.4 Let f(x, y) = x2 + y2 − 25. Let C be the portion of the See 4.24 if you forgot how to
parametrize plane curves.

See Larson 15.2: 1–20, 63–70.
Some problems give you a
parameterization, some expect you
to come up with one on your own.

Check your answer with Sage.

parabola y2 = x between (1,−1) and (4, 2). We want to compute
∫
C
fds.

1. Draw the curve C and the function f(x, y) on the same 3D xyz axes.

2. Without computing the line integral
∫
C
fds, determine if the integral

should be positive or negative. Explain why this is so by looking at the
values of f(x, y) at points along the curve C. Is f(x, y) positive, negative,
or zero, at points along C?

3. Parametrize the curve and set up the line integral
∫
C
fds. [Hint: if you

let y = t, then x =? What bounds do you put on t?]

4. Use technology to compute
∫
C
fds to get a numeric answer. Was your

answer the sign that you determined above?

Problem 8.5 Compute
∫
C

1ds for the following curves C and interpret your
answers.

https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
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1. C is the curve ~r(t) = (2 cos t, 2 sin t), t ∈ [0, 2π].

2. C is the curve ~r(t) = (cos t, t, sin t), t ∈ [0, π].

Problem: Challenge Set up (do not evaluate) an integral formula to

compute the length of the polar coordinate rose r = 2 cos 3θ.

8.2 Work, Flow, Circulation, and Flux

Let’s turn our attention to the work done by a vector field representing a force
as we move through the field. Work is a transfer of energy.

• A tornado picks up a couch and applies forces to the couch as the couch
swirls around the center. Work measures the transfer of energy from the
tornado to the couch, giving the cough its kinetic energy.

• When an object falls, gravity does work on the object. The work done by
gravity converts potential energy to kinetic energy.

• If we consider the flow of water down a river, it’s gravity that gives the
water its kinetic energy. We can place a hydroelectric dam next to river
to capture a lot of this kinetic energy. Work transfers the kinetic energy
of the river to rotational energy of the turbine, which eventually ends up
as electrical energy available in our homes.

When we study work, we are really studying how energy is transferred. This is
one of the key components of modern life.

Let’s start with simple review. Recall from Section 2.2.1 that the work done
by a vector field ~F through a displacement ~d is the dot product ~F · ~d.

Review An object moves from A = (6, 0) to B = (0, 3). Along the way, it

encounters the constant force ~F = (2, 5). How much work is done by ~F as the
object moves from A to B? See 1.

Problem 8.6 An object moves from A = (6, 0) to B = (0, 3). A parametriza-
tion of the objects path is ~r(t) = (−6, 3)t+ (6, 0) for 0 ≤ t ≤ 1.

1. For 0 ≤ t ≤ .5, the force encountered is ~F = (2, 5). For .5 ≤ t ≤ 1, the
force encountered is (2, 6). How much work is done in the first half second?
How much work is done in the last half second? How much total work is
done?

2. If we encounter a constant force ~F over a small displacement d~r, explain

why the work done is dW = ~F · d~r = F · d~r
dt
dt.

3. Suppose that the force constantly changes as we move along the curve. At You can visualize what’s
happening in this problem as
follows. A sailboat sails in a
straight line between two points.
As the sailboat moves through the
water and the wind, the wind
blows at the sailboat from
different directions.

See Sage

time t, we encounter the force F (t) = (2, 5 + 3t), which we could think of
as the wind blowing stronger and stronger to the north. Explain why the
total work done by this force along the path is

W =

∫
~F · d~r =

∫ 1

0

(2, 5 + 3t) · (−6, 3)dt.

Then compute this integral. It should be slightly larger than the first part.

1The displacement is B −A = (−6, 3). The work is ~F · ~d = (2, 5) · (−6, 3) = −12 + 15 = 3.

https://sagecell.sagemath.org/?z=eJytU01vm0AQvSPxH0aYiCXeWnGr5sYplXtKLq3EwbGsDbvYqwBLl4FAf31nAeOkvRbJAs-8N28-O2FZhBGPevoNUQzjs_qmcl0pGExroRNWi5dCNb5nGcaQAPt0f4vrew5fbvHC-IECZ0ItrCgVWv1boDYVgO-9mLaSjaMiv-PbibT6rjsFsys3FvCs_ib73o71fBhVP_Ov6yG-ijl4pzIkZq5VIX2vv-r0pHM_6qx-nlWz6AiroG1U3hagc5cvvIkKAQ2U4lWBgJMxEurC4Mb3hmu84X_E8z1pKZjdSJ3n7NI7CvlgyrqdS5LK6o6K7xTB02THbl3b4400eKytkW2GTI4mWO10JUmj0IgFpaQRTA5vxr5uAChNyIxUYPd3BzhRvGaMn2vbIHnK2lSqQg6CYtj99j2mUZmp5IYmlya6QnWy1HAmUz5VHbtSzlgWLAgCp-MkQVI8eBkg3CU3TQiiMNVpjJa1lgZtk9CZfW8s2XRqGvjcx9GnpzcFvcG2LhQrRc0Kku457KdF4OBK5zONQ3qI43hKZoNuTdne9_Y2CJ9pNUZsGHAIwpHsPp3pwCeMnEAzQvZcThi5gIJwtzAvCVwmMgMerz5q9NVNf2bE0zvE9j1ie1gyoUE_ZzRi-JDTo-zXT3IYc0ov2DR5ppkcH-AfRsrTg--RwlkJWiNI9tGvltZR40DnrStAZcvG7UhIyYQRh49GDCPij9Otk-USs6NbXzb2fZl_vU6c9Tgd4HE8QLbj8wXyYQE2Z_PG6vgPS3NRVA==&lang=sage
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4. (Optional) If you are familiar with the units of energy, complete the

following. What are the units of ~F , d~r, and dW .

We know how to compute work when we move along a straight line. Prior
to problem 2.19 on page 15, we made the following statements.

If a force F acts through a displacement d, then the most basic
definition of work is W = Fd, the product of the force and the
displacement. This basic definition has a few assumptions.

• The force F must act in the same direction as the displacement.

• The force F must be constant throughout the displacement.

• The displacement must be in a straight line.

We used the dot product to remove the first assumption, and we showed in
problem 2.19 that the work is simply the dot product

W = ~F · ~r,

where ~F is a force acting through a displacement ~r. The previous problem
showed that we can remove the assumption that ~F is constant, by integrating
to obtain

W =

∫
~F · d~r =

∫ b

a

F · d~r
dt
dt,

provided we have a parametrization of ~r with a ≤ t ≤ b. The next problem gets
rid of the assumption that ~r is a straight line.

Problem 8.7 Suppose that we move along the circle ~r(t) = (3 cos t, 3 sin t). Watch a YouTube video about
work.

Please use this Sage link to check
your work.

As we move along this circle, we encounter a rotation force ~F (x, y) = (−2y, 2x).

1. Draw the curve ~r(t). Then at several points on the curve, draw the vector

field ~F (x, y). For example, at the point (3, 0) you should have the vector
~F (3, 0) = (−2(0), 2(3)) = (0, 6), a vector sticking straight up 6 units. Are
we moving with the vector field, or against the vector field?

2. Explain why we can state that a little bit of work done over a small
displacement is dW = ~F · d~r. Why does it not matter that ~r moves in a
straight line?

3. Explain why the work done by ~F along the circle C is We put the C under the integral∫
C to remind us that we are

integrating along the curve C.
This means we need to get a
parametrization of the curve C,
and give bounds before we can
integrate with respect to t.

W =

∫
C

(−2y, 2x) · d~r =

∫ 2π

0

(−2(3 sin t), 2(3 cos t)) · (−3 sin t, 3 cos t)dt.

Then integrate to show that the work done by ~F along this circle is 36π.

It’s time for a definition.

Definition 8.B. The work done by a vector field ~F , along a curve C with
parametrization ~r(t) for a ≤ t ≤ b is

W =

∫
C

~F · d~r =

∫ b

a

~F · d~r
dt
dt.

If we let ~F = (M,N) and we let ~r(t) = (x, y), so that d~r = (dx, dy), then we
can write work in the differential form

W =

∫
C

~F · d~r =

∫
C

(M,N) · (dx, dy) =

∫
C

Mdx+Ndy.

http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
https://sagecell.sagemath.org/?z=eJytU8FuozAQvSPxDyNChUndqGnOnLrKntrLrsQhjSIHm8QqYNYYAvv1OzaEpLvXRUKYmfdmxvNmOqZJZCIa9fgOUQzuWXwTuawEDKrV0DEt2bEQje9pYmJIgGyWmWrwTGGzbGSFpyvxh2Fm4tVMs1IYLX8zI1UF4HtH1Va8sREMfaYvy1qOvMV32QmYvLnSYM7ib77vbUlPB5f_6WU5IL2PbyktoxOZQXIuRcF9r79l6-nThm5crsXPs2jmXEwLaBuRtwXI3JYNF1YZMApK9imAwUkpDnWhzMr3hlvA4b8E9D2uMZpecZnntrXTs3hVZd1Ol-JCyw470AmEp8mWLK0K8Yorc6i14m1mCHcmWGxlxTFHIY0psCRpQOVwUfpzBYBlQqa4AL173sMJ4zUufi51Y9BT1qoSlaHAMIbere8xjchUxVeoYJrIyoiTxpYTntLx1rG9ytmUBQmCwOaxKYFjPDgOEG6ThyYEVqjq5KJlrUa1dRJas--5K6tOjKpPfXQ-OX4x6INp60KQktWkwNQ9hd04DRS0m8ORRiHdx3E8FrMydmrJzvd2Ogg_cDgcNgwoBKEj26M17emI4SNoQvCe8hHDZ1AQbmfmtYCrIhPg7ebDRt_c-DMh3u8Q63vEej9XgkJ_ZCgxfKnpjfeP73xwNaVXbJp8oCaHV_iHkdJ073uY4SwYjhEku-hXi-MozYDbLiswQpeNnZEQiwkjCl-NJoyQ79Stk3kds4MdX-L6PutfPybWehhX8OBWkGzptIN0mIHNWV1IHf8BpfhWHQ==&lang=sage


CHAPTER 8. LINE INTEGRALS 85

Review Consider the curve y = 3x2−5x for −2 ≤ x ≤ 1. Give a parametriza-
tion of this curve. See 2.

Problem 8.8 Consider the parabolic curve y = 4− x2 for −1 ≤ x ≤ 2, and Please use this Sage link to check
your work.the vector field ~F (x, y) = (2x+ y,−x).

1. Give a parametrization ~r(t) of the parabolic curve that starts at (−1, 3)
and ends at (2, 0). See the review problem above if you need a hint.

2. Compute d~r and state dx and dy. What are M and N in terms of t?

3. Compute the work done by ~F to move an object along the parabola from
(−1, 3) to (2, 0) (i.e. compute

∫
C
Mdx+Ndy). Check your answer with

Sage.

4. How much work is done by ~F to move an object along the parabola from
(2, 0) to (−1, 3). In general, if you traverse along a path backwards, how
much work is done?

Problem 8.9 Again consider the vector field ~F (x, y) = (2x+ y,−x). In the

previous problem we considered how much work was done by ~F as an object
moved along the the parabolic curve y = 4− x2 for −1 ≤ x ≤ 2. We now want
to know how much work is done to move an object along a straight line from
(−1, 3) to (2, 0).

1. Give a parametrization ~r(t) of the straight line segment that starts at
(−1, 3) and ends at (2, 0). Make sure you give bounds for t.

2. Compute d~r and state dx and dy. What are M and N in terms of t?

3. Compute the work done by ~F to move an object along the straight line
path from (−1, 3) to (2, 0). Check your answer with Sage. When you enter your curve in

Sage, remember to type the times
symbol in “(3*t-1, ...)”.
Otherwise, you’ll get an error.

4. Optional (we’ll discuss this in class if you don’t have it). How much work
does it take to go along the closed path that starts at (2, 0), follows the
parabola y = 4− x2 to (−3, 1), and then returns to (2, 0) along a straight
line. Show that this total work is W = −9.

The examples above showed us that we can compute work along any closed
curve. All we have to do is parametrize the curve, take a derivative, and then
compute dW = ~F · d~r. This gives us a little bit of work along a curve, and we
sum up the little bits of work (integrate) to find the total work.

In the examples above, the vector fields represented forces. However, vector
fields can represent much more than just forces. The vector field might represent
the flow of water down a river, or the flow of air across an airplane wing. When
we think of the vector field as a velocity field, a natural question is: how much
of the fluid flows along our curve (the flow)? Alternately, we might ask how
much of the fluid goes across our curve (the flux ). Flow along a curve is directly
related to the lift of an airplane wing (which occurs when the flow along the top
of the wing is different than the flow below the wing). The flux across a curve
will quickly take us to powering a wind mill as wind flows across the surface of a
blade (once we hit 3D integrals). Flux is also extremely important in studying
electric and magnetic fields.

2Whenever you have a function of the form y = f(x), you can always use x = t and
y = f(t) to parametrize the curve. So we can use ~r(t) = (t, 3t2 − 5t) for −2 ≤ t ≤ 1 as a
parametrization.

https://sagecell.sagemath.org/?z=eJylU8FuozAQvSPxDyNChGncqK165dQVe0ouuxKHJI3c2CRWAbNmILBfv7ahpN09LlIU8Lx5bzxvpmOaRBjRqDe_IYrBPYtvIpeVgEG1GjqmJXsrRON7mmAMCRCkz_f4-vSB_oEMJ3DNNCsFavmboVQVgO-9qbbizZh2_0inrMV32QmYYrnSgBfxd7bvpaSng5N8uutXA73v45ugzejECU1yLkXBfa-_afU3rcXPi2hmLaYFtI3I2wJkbouGK6sQUEHJ3gUwOCvFoS4Urn1vuBEO9IE-_y-f723oNkntC9eGVa-5zHPb1elZvKiybqfLcaFlZzrRCQPPkpTcWQNiuAPunFiksuJGoZCIhSlIIqgcrkq_rwFMkXBSXIDePRzgbEgaR5pL3aCJlLWqRIUUmOHQu8fPmEacVMXXxrwskRWKszb9Jjyj451jW_8Fy4IEQWB1rCRwwwdvA4RpsmxCYIWqzo7t1GpjtU5Ce-x77p6qE6PlUxddTI7_hnSJbV0IUrKaFEa6p7AbR4GCvTmd0ihkhziOx2LWaKeU7Hxvp4NwbybDYcOAQhC6ZPtqjw50xPARNCF4T_mI4TMoCNM586OADxsmwMbGNlNs8zW2tbHtFNt-jll14-j-xBXClzo2vF9t-TB-LJs95RgGS9cF48CcnSV748zxBf7hyGh28L0DhYtgZoIg2UW_WjOSEgez47ICFLps7KSEprAwovD1EMPI5DuP62TeyNPRjjBx3Z-noF4l9vQ4buHRbSFJ6bSGdJiBzUVdSR3_AagoUJM=&lang=sage
https://sagecell.sagemath.org/?z=eJylU8FuozAQvSPxDyNChGncqK165dQVe0ouuxKHJI3c2CRWAbNmILBfv7ahpN09LlIU8Lx5bzxvpmOaRBjRqDe_IYrBPYtvIpeVgEG1GjqmJXsrRON7mmAMCRCkz_f4-vSB_oEMJ3DNNCsFavmboVQVgO-9qbbizZh2_0inrMV32QmYYrnSgBfxd7bvpaSng5N8uutXA73v45ugzejECU1yLkXBfa-_afU3rcXPi2hmLaYFtI3I2wJkbouGK6sQUEHJ3gUwOCvFoS4Urn1vuBEO9IE-_y-f723oNkntC9eGVa-5zHPb1elZvKiybqfLcaFlZzrRCQPPkpTcWQNiuAPunFiksuJGoZCIhSlIIqgcrkq_rwFMkXBSXIDePRzgbEgaR5pL3aCJlLWqRIUUmOHQu8fPmEacVMXXxrwskRWKszb9Jjyj451jW_8Fy4IEQWB1rCRwwwdvA4RpsmxCYIWqzo7t1GpjtU5Ce-x77p6qE6PlUxddTI7_hnSJbV0IUrKaFEa6p7AbR4GCvTmd0ihkhziOx2LWaKeU7Hxvp4NwbybDYcOAQhC6ZPtqjw50xPARNCF4T_mI4TMoCNM586OADxsmwMbGNlNs8zW2tbHtFNt-jll14-j-xBXClzo2vF9t-TB-LJs95RgGS9cF48CcnSV748zxBf7hyGh28L0DhYtgZoIg2UW_WjOSEgez47ICFLps7KSEprAwovD1EMPI5DuP62TeyNPRjjBx3Z-noF4l9vQ4buHRbSFJ6bSGdJiBzUVdSR3_AagoUJM=&lang=sage
https://sagecell.sagemath.org/?z=eJylU8FuozAQvSPxDyNChGncqK165dQVe0ouuxKHJI3c2CRWAbNmILBfv7ahpN09LlIU8Lx5bzxvpmOaRBjRqDe_IYrBPYtvIpeVgEG1GjqmJXsrRON7mmAMCRCkz_f4-vSB_oEMJ3DNNCsFavmboVQVgO-9qbbizZh2_0inrMV32QmYYrnSgBfxd7bvpaSng5N8uutXA73v45ugzejECU1yLkXBfa-_afU3rcXPi2hmLaYFtI3I2wJkbouGK6sQUEHJ3gUwOCvFoS4Urn1vuBEO9IE-_y-f723oNkntC9eGVa-5zHPb1elZvKiybqfLcaFlZzrRCQPPkpTcWQNiuAPunFiksuJGoZCIhSlIIqgcrkq_rwFMkXBSXIDePRzgbEgaR5pL3aCJlLWqRIUUmOHQu8fPmEacVMXXxrwskRWKszb9Jjyj451jW_8Fy4IEQWB1rCRwwwdvA4RpsmxCYIWqzo7t1GpjtU5Ce-x77p6qE6PlUxddTI7_hnSJbV0IUrKaFEa6p7AbR4GCvTmd0ihkhziOx2LWaKeU7Hxvp4NwbybDYcOAQhC6ZPtqjw50xPARNCF4T_mI4TMoCNM586OADxsmwMbGNlNs8zW2tbHtFNt-jll14-j-xBXClzo2vF9t-TB-LJs95RgGS9cF48CcnSV748zxBf7hyGh28L0DhYtgZoIg2UW_WjOSEgez47ICFLps7KSEprAwovD1EMPI5DuP62TeyNPRjjBx3Z-noF4l9vQ4buHRbSFJ6bSGdJiBzUVdSR3_AagoUJM=&lang=sage
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Review If the unit tangent vector is ~T =
(3, 4)

5
, give two unit vectors that

are orthogonal to ~T . See 3.

Problem 8.10 We used the formulas

W =

∫
C

~F · d~r =

∫
C

(M,N) · (dx, dy)

to compute the work done by ~F along a curve C parametrized by ~r = (x, y).

1. Explain why W =
∫
C
~F · ~Tds. [Why does ~Tds = d~r? Look up ~T in the

last chapter.] Watch a YouTube video about
flow and circulation.

2. Show that ~F · ~T is the projection of ~F onto the vector T (the amount
of work in the tangential direction). [Just write down the formula for a

projection. How long is ~T? This should be really fast.]

3. We know that ~T =
(dx, dy)√

(dx)2 + (dy)2
. Suppose ~n is a unit normal vector Watch a YouTube video about

flux.

to the curve. Give two options for ~n. [Hint: Look at the review problem.]

4. We know ~Tds = (dx, dy). Why does ~nds equal (dy,−dx) or (−dy, dx)?

5. The integral W =
∫
C
~F · ~Tds measures how much of the vector field flows

along the curve. What does the integral Φ =
∫
C
~F · ~nds measure?

Problem 8.11: Intro to Flux Consider the curve ~r(t) = (5 cos t, 5 sin t),

and the vector field ~F (x, y) = (3x, 3y). This is a radial field that pushes things
straight outwards (away from the origin).

1. Compute the work W =

∫
C

(M,N) · (dx, dy) and show that is equals zero.

(Can you give a reason why it should be zero?) See Sage for the work calculation.

2. To get a normal vector, we could change (dx, dy) to (dy,−dx) or to

(−dy, dx). Compute both

∫
C

(M,N) · (dy,−dx) and

∫
C

(M,N) · (−dy, dx).

(They should differ by a sign.) Both integrals measure the flow of the field
across the curve, instead of along the curve.

3. If we want flux to measure the flow of a vector field outwards across a
curve, then the flux of this vector field should be positive. Which vector,
(dy,−dx) or (−dy, dx), should we choose above for n. See Sage for the flux computation

4. (Challenge, we’ll discuss in class.) Suppose ~r is a counterclockwise
parametrization of a closed curve. The outward normal vector would al-
ways point to the right as you move along the curve. Prove that (dy,−dx)
always points to the right of the curve. [Hint: If you want a right pointing

vector, what should ~B = ~T × ~n always equal (either (0, 0, 1) or (0, 0,−1)).

Use the fact that ~B × ~T = ~n to get ~n.]

http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
https://sagecell.sagemath.org/?z=eJylU8FuozAQvSPxDyNChGncqK165dQVe0ouuxKHJI3c2CRWAbNmILBfv7ahpN09LlIU8Lx5bzxvpmOaRBjRqDe_IYrBPYtvIpeVgEG1GjqmJXsrRON7mmAMCRCkz_f4-vSB_oEMJ3DNNCsFavmboVQVgO-9qbbizZh2_0inrMV32QmYYrnSgBfxd7bvpaSng5N8uutXA73v45ugzejECU1yLkXBfa-_afU3rcXPi2hmLaYFtI3I2wJkbouGK6sQUEHJ3gUwOCvFoS4Urn1vuBEO9IE-_y-f723oNkntC9eGVa-5zHPb1elZvKiybqfLcaFlZzrRCQPPkpTcWQNiuAPunFiksuJGoZCIhSlIIqgcrkq_rwFMkXBSXIDePRzgbEgaR5pL3aCJlLWqRIUUmOHQu8fPmEacVMXXxrwskRWKszb9Jjyj451jW_8Fy4IEQWB1rCRwwwdvA4RpsmxCYIWqzo7t1GpjtU5Ce-x77p6qE6PlUxddTI7_hnSJbV0IUrKaFEa6p7AbR4GCvTmd0ihkhziOx2LWaKeU7Hxvp4NwbybDYcOAQhC6ZPtqjw50xPARNCF4T_mI4TMoCNM586OADxsmwMbGNlNs8zW2tbHtFNt-jll14-j-xBXClzo2vF9t-TB-LJs95RgGS9cF48CcnSV748zxBf7hyGh28L0DhYtgZoIg2UW_WjOSEgez47ICFLps7KSEprAwovD1EMPI5DuP62TeyNPRjjBx3Z-noF4l9vQ4buHRbSFJ6bSGdJiBzUVdSR3_AagoUJM=&lang=sage
https://sagecell.sagemath.org/?z=eJytVE2P2jAQvUfKfxhBEA71rqqudm-ctsqqB7i0Ug-AkDd2wGqIU9thk_76jj8CXfZapAjbM_Pmzbyxz0yTuZ3TeY_fMM_h5jf9KirZCBhUp-HMtGSvtTBpoonNYQnkcVEqg2v6uDCywUVEmH63zMawlml2ElbLP8xK1QCkyavqGm4cgKWf6ZdFK99nnr7Is4DoVSkN9ihucdKkID0dPI2HRU8fFsMN_UjCxZ5FaRGmkqLmadJf8_f07ok-3Qb-OApzyc-0gM6IqqtBVq4keGONBavgxH4JYHBQikNbK3ufJsMVevjP0GnCNeJyWVVEU_tBKwR_Vqe2iyVzoeUZO3UWaUJ4T7lvFddpEviFlhDCkSfvg3DTF2F9cKP0idVj214HMG-sbWVz8FalERxYw6E8suYwHht5aDzPFV1jgsJTLuquXxZkof1wLACTu9mZFhLDGdTS2hr7IS2oCpzzPfxE8spC4TM4sii1Q5GNFQeNkhKPSkMTA_Fvo-0DZuUwHZWjPdVETyYTlMCfOmtWLGcmA1ZqZYyvouw0zl62xdpBe2Oa-O6qswiDGMXLnE2Gf0Sd2a6tBTmxltTIo6ewCQNKwdVOYxj1Re7yPA-M7q27UmSTJhs9iVnRPZtQmGQ-3i3d0Y4GHx6cokdQ1m34v07NlnIzugSF3S50f3QK_JYE9fLWke8o1-i3csZVNK5ujGtnXEfj-sYY5d-WTlDPG4nBhdnM5MhzuIuLPpvMQvNIyJbTsAvwuL0GWfQNRp_jWpNLuMVR2T_DTV6f1k-OlyBNdhSOgrlZXm7mvzu8etIO-BDKBqzQJ-MHBDNncwrvD202x_jcjVW7vDxM5d5dVeLljsOJ9k9Ld7oPd2nvnyBS0PgG0eHiaI7qjbT5X0yTnwg=&lang=sage
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Definition 8.C: Flow, Circulation, and Flux. Suppose C is a smooth curve • Watch a YouTube video
about flow and circulation.

• Watch a YouTube video
about flux.

with parametrization ~r(t) = (x, y). Suppose that ~F (x, y) is a vector field that
represents the velocity of some fluid (like water or air).

• We say that C is closed curve if C begins and ends at the same point.

• We say that C is a simple curve if C does not cross itself.

• The flow of ~F along C is the integral

Flow =

∫
C

(M,N) · (dx, dy) =

∫
C

Mdx+Ndy.

• If C is a simple closed curve parametrized counter clockwise, then the flow
of ~F along C is called circulation, and we write Circulation =

∮
C
Mdx+

Ndy

• The flux of ~F across C is the flow of the fluid across the curve (an
area/second). If C is a simple closed curve parametrized counter clockwise,
then the outward flux is the integral

Flux = Φ =

∫
C

(M,N) · (dy,−dx) =

∫
C

Mdy −Ndx.

Problem 8.12 Consider the vector field ~F (x, y) = (2x+ y,−x+ 2y). When If you haven’t yet, please watch
the YouTube videos for

• work,

• flow and circulation, and

• flux.

you construct a plot of this vector field, you’ll notice that it causes objects to spin
outwards in the clockwise direction. Suppose an object moves counterclockwise
around a circle C of radius 3 that is centered at the origin. (You’ll need to
parameterize the curve.)

1. Should the circulation of ~F along C be positive or negative? Make a guess,
and then compute the circulation

∮
C
Mdx + Ndy. Whether your guess

was right or wrong, explain why you made the guess.

2. Should the flux of ~F across C be positive or negative? Make a guess, and
then actually compute the flux

∮
C
Mdy −Ndx. Whether your guess was

right or wrong, explain why you made the guess.

3. Please use this Sage link to check both computations.

We’ll tackle more work, flow, circulation, and flux problems, as we proceed
through this chapter.

Work, flow, circulation, and flux are all examples of line integrals. Remember
that work, flow, and circulation are

W =

∫
C

(~F · ~T )ds =

∫
C

(M,N) · (dx, dy) =

∫
C

Mdx+Ndy,

while the formula for flux is

Φ =

∫
C

(~F · ~n)ds =

∫
C

(M,N) · (dy,−dx) =

∫
C

Mdy +Ndx.

Do you see how these are both the line integral of a function f = ~F · ~T or
f = ~F · ~n along a curve C. The function f inside the integrand does not have
to represent the height of a sheet. We’ll use it to represent lots of things. Let’s
practice two more work/flux problems, to sharpen our skills with these concepts.

http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
https://sagecell.sagemath.org/?z=eJy1VFFv2jAQfvevOFEkHGrYuqnVNMnSNmk8td1UVeKBIpTGDlgNdnR2KPn3O8dpC6x7XB6wuXzf3Xff2dnlyEd70YowythM7nQRHPLFpBX7ZcbwNXA5LpznIRNwOfbG0o5eBx9yDPIjC9oq-WlcG8YSYVUaXanVo2us8iCB872YXIkr4vM27TLG2Blc6zDysM2fNORQNrYIxllAs94EcGUJwYHe5VWTBwJYMDboNeYVuJ1GCBvjoWhwp6dM6RIqY_XqBcL7jVXZVwb0oA4NWri747bZajRFXr2BD9BT3zx6vpe4-LgU0NJ6sSTdqVlaqdeMXpF-hVKZsuQoQsbUXM5OWWOFcAY3TRVMXbXGriE8O0gWeeptrcOG-libnaa_Gw3KBajRqaYIbC6P-1FzKkl2kvfRURUrCJgo7MSoWdXs31FABNa9OkkWY2kE999_XP9km7CtpiF_rDRfsAUOhg8kEyifaLPhQMBsKd7CSBpiEPtgGAJZt9YU4uHEqh6iEjGyFB7mmvHXlKnQaQsvCeYy4eGhiDYdJpz3GIJQh6D69V_4-WF9C8rHYHL2pVhyMzEjghy_AdXCBG5B7buiEfLK6PDDVL3bd9vjBF3oRrWT25Qh4pYsHqQz-H396559i-PBnGYfT_OKk41By8WgrNzzQNDS7AfL_jTXsq5cWB1eNz4TMH7n_mWJcC6hzjHf6kBnfxXZdHD_npegW1U8We29_JyYpoSkRCYlSUB8Sodg6FKC78bPDxPF1LRMUiz7cPEleyN2goAU5YjumdPwpYnfBjyH6SXdmiwFClc5lCPUapSk6OpIDPnx38VEA4_UrFFr2-vpfvyGWLWA3Ndk_gpz-obJi-wPG3Sl-A
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Problem 8.13 Let ~F = (−y, x + y) and C be the triangle with vertices Watch a YouTube video. Also, see
Sage for a picture.

Instructor: Answers—Sage.
(2, 0), (0, 2), and (0, 0).

1. Look at a drawing of C and the vector field (see margin for the Sage link).
We’ll move along the triangle in a counter clockwise manner. Without
doing any computations, for each side of the triangle make a guess to
determine if the flow along that edge is positive, negative, or zero. Similarly,
guess the sign of the flux along each edge. Explain.

2. Obtain three parameterizations for the edges of the triangle. One of the
parameterizations is ~r(t) = (0,−2)t+ (0, 2).

3. Now find the counterclockwise circulation (work) done by ~F along C.
You’ll have three separate calculations, one for each side. We’ll do the
flux computation in class. Check your work on each piece with the Sage
calculator.

Problem 8.14 Consider the vector field ~F = (2x−y, x). Let C be the curve See Sage. Think of an airplane
wing as you solve this problem.

Instructor: Answers—Sage.
Again, we’ll discuss why some are
positive, and some are negative. I
want to emphasize flow in, and
flow out. One is clearly positive,
the other clearly negative. The
overall sum is positive. It should
be obvious with a picture.

that starts at (−2, 0), follows a straight line to (1, 3), and then back to (−2, 0)
along the parabola y = 4− x2.

1. Look at a drawing of C and the vector field (see margin for the Sage link).
If we go counterclockwise around C, for each part of C, guess the signs of
the counterclockwise circulation and the flux (positive, negative, zero).

2. Find the flux of ~F across C. There are two curves to parametrize. Make
sure you traverse along the curves in the correct direction. [Hint: You
should get integer values along both parts. Check your work with Sage,
but make sure you show us how to do the integrals by hand.]

Ask me in class to change the vector fields above, and examine what happens
with different vectors fields. In particular, it’s possible to have any combination
of values for circulation and flux. We’ll be able to use technology to rapidly
compute many values.

8.3 Average Value

The concept of averaging values together has many applications. In first-semester
calculus, we saw how to generalize the concept of averaging numbers together to
get an average value of a function. We’ll review both of these concepts. Later,
we’ll generalize average value to calculate centroids and center of mass.

Problem 8.15 Suppose a class takes a test and there are three scores of Instructor: Throughout the
section, I point out how each
formula is a variation on one of
the patterns below.

70, five scores of 85, one score of 90, and two scores of 95. We will calculate the
average class score, s̄, four different ways to emphasize four ways of thinking
about the averages. We are emphasizing the pattern of the calculations in this
problem, rather than the final answer, so it is important to write out each

calculation completely in the form s̄ = before calculating the number s̄.

1. Compute the average by adding 11 numbers together and dividing by the s̄ =
∑

values
number of values

number of scores. Write down the whole computation before doing any
arithmetic.

http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54&index=3&feature=plpp_video
https://sagecell.sagemath.org/?z=eJw9yjEKhDAQRuF-TzKDvxLTp80lgohodMMORjZBnNtvqm0-XvE8PVB21CueTvl1Sa7zHdeav_Oeomzk0ZZ-GGGHkUH6b-6uLHrkk0IwsBOChWma5oQ9iTi_SImo77R-zliKs_wDRwwhgQ
https://sagecell.sagemath.org/?z=eJy9Vd9r2zAQfs9fcaSByK2c1S2DURBsK8tT241SyIMbghvJiakjh7Ps2P_9TlKa2GnL3paHSLof3313J53rBNm44S0342AwFbVamgJZHLa8uWjnwaA6iC75JZ3rw_nKnXcd_RWdB2dg1qgUyCxNFSptIM-0glKtNnQoBxiJmNVhFZybi4oDM_ySR8F8gFck34W1lddd-TXJq3Bn5buOfODjLtJM5XLxUlRaliCAsYaHEb8OyLT1OyKFeVYaEWPE8YrjNXl_z7RRmCzNQKoUFuxWOJvgZgD0Q05xTGkSNByM0jIQt05xBnfKjEvYJK8KEkgrvTRZoQGz1dpAkaZgClB1kleJIQMNNswKkxyKWiGVJithWWGtJg7OxrblWbyZsf2GInomjo0yFWp4fGS62ijMlkl-dOh4TMrqpWSNwPhyzqGlNZpTHXp5xLZpFtTHR2H7xJAbL5UzMT1FOJdIed9Xucm2eZvpFZhdAb78JeW7UmZNua2yWtFxTa0vDGyxkBVV14LORD9HOetQoLYxE9jOSRuNQyjxQFJO86r5gBE5Ob1Tn4BbWQd_37anHz_vfrn92mzyiUlecsViJ4hxOHqmdIDi8DYYDTlM57yvQuJoFdhRmBFQ2Vdq6G5lv8wdM-kBrLfEU9wpO8D7wKepdoFmwvvA89KWuAs869iRGVXDttKtn_nMTrlokKVV-I50A_sueARrRd26B9lCCA8gG0fAmvS8nM_IM3F7t-2DONG9bMMHj2Lt5g7AThIaJX_ufj-9e6pUZ6NEPNSFptoP07zYuaVqhvP9q9mKbV6YRXdEsCmH8w9mhr8qaYH2MdNzBTcHOo_PdXffXD8KyPCgfveC_nmnHb8LAdsEk40y9JwXlizDD64Rp4GxfNWqLMX10TtLwddA-OSPZN9SyWwipbudrAtoQ9ASelnwJfoW9J0dOSB2CWKxY3QvRWZHKV7A5CsNgsALlkVeoBijkuMjLZX3iFE7_hsx28cesxV9gvSeW7PJNG82SSM-aD-1JY5u_KVrrWH7mWF0NCzXRGHLISm3ZLjAhL4BIuI2kDhGs3_cYoojsP0L_gLPyDNp 
https://sagecell.sagemath.org/?z=eJy1VFFv2jAQfvevOFEkHGrYuqnVNMnSNmk8td1UVeKBIpTGDlgNdnR2KPn3O8dpC6x7XB6wuXzf3Xff2dnlyEd70YowythM7nQRHPLFpBX7ZcbwNXA5LpznIRNwOfbG0o5eBx9yDPIjC9oq-WlcG8YSYVUaXanVo2us8iCB872YXIkr4vM27TLG2Blc6zDysM2fNORQNrYIxllAs94EcGUJwYHe5VWTBwJYMDboNeYVuJ1GCBvjoWhwp6dM6RIqY_XqBcL7jVXZVwb0oA4NWri747bZajRFXr2BD9BT3zx6vpe4-LgU0NJ6sSTdqVlaqdeMXpF-hVKZsuQoQsbUXM5OWWOFcAY3TRVMXbXGriE8O0gWeeptrcOG-libnaa_Gw3KBajRqaYIbC6P-1FzKkl2kvfRURUrCJgo7MSoWdXs31FABNa9OkkWY2kE999_XP9km7CtpiF_rDRfsAUOhg8kEyifaLPhQMBsKd7CSBpiEPtgGAJZt9YU4uHEqh6iEjGyFB7mmvHXlKnQaQsvCeYy4eGhiDYdJpz3GIJQh6D69V_4-WF9C8rHYHL2pVhyMzEjghy_AdXCBG5B7buiEfLK6PDDVL3bd9vjBF3oRrWT25Qh4pYsHqQz-H396559i-PBnGYfT_OKk41By8WgrNzzQNDS7AfL_jTXsq5cWB1eNz4TMH7n_mWJcC6hzjHf6kBnfxXZdHD_npegW1U8We29_JyYpoSkRCYlSUB8Sodg6FKC78bPDxPF1LRMUiz7cPEleyN2goAU5YjumdPwpYnfBjyH6SXdmiwFClc5lCPUapSk6OpIDPnx38VEA4_UrFFr2-vpfvyGWLWA3Ndk_gpz-obJi-wPG3Sl-A
https://sagecell.sagemath.org/?z=eJy1VFFv2jAQfvevOFEkHGrYuqnVNMnSNmk8td1UVeKBIpTGDlgNdnR2KPn3O8dpC6x7XB6wuXzf3Xff2dnlyEd70YowythM7nQRHPLFpBX7ZcbwNXA5LpznIRNwOfbG0o5eBx9yDPIjC9oq-WlcG8YSYVUaXanVo2us8iCB872YXIkr4vM27TLG2Blc6zDysM2fNORQNrYIxllAs94EcGUJwYHe5VWTBwJYMDboNeYVuJ1GCBvjoWhwp6dM6RIqY_XqBcL7jVXZVwb0oA4NWri747bZajRFXr2BD9BT3zx6vpe4-LgU0NJ6sSTdqVlaqdeMXpF-hVKZsuQoQsbUXM5OWWOFcAY3TRVMXbXGriE8O0gWeeptrcOG-libnaa_Gw3KBajRqaYIbC6P-1FzKkl2kvfRURUrCJgo7MSoWdXs31FABNa9OkkWY2kE999_XP9km7CtpiF_rDRfsAUOhg8kEyifaLPhQMBsKd7CSBpiEPtgGAJZt9YU4uHEqh6iEjGyFB7mmvHXlKnQaQsvCeYy4eGhiDYdJpz3GIJQh6D69V_4-WF9C8rHYHL2pVhyMzEjghy_AdXCBG5B7buiEfLK6PDDVL3bd9vjBF3oRrWT25Qh4pYsHqQz-H396559i-PBnGYfT_OKk41By8WgrNzzQNDS7AfL_jTXsq5cWB1eNz4TMH7n_mWJcC6hzjHf6kBnfxXZdHD_npegW1U8We29_JyYpoSkRCYlSUB8Sodg6FKC78bPDxPF1LRMUiz7cPEleyN2goAU5YjumdPwpYnfBjyH6SXdmiwFClc5lCPUapSk6OpIDPnx38VEA4_UrFFr2-vpfvyGWLWA3Ndk_gpz-obJi-wPG3Sl-A
https://sagecell.sagemath.org/?z=eJxNjEEOQDAUBfdO8j-vSZWtrUs0ZUFFo0FopL09VmwnM9NSROKGVB5FQuRs91voLzuE7egnZ_1ILR5HKJQMSpComQvvVktaP1Qa6BKVMQizG5bVnmejuHg3VIvYqa_-CzduCCO3
https://sagecell.sagemath.org/?z=eJy9VUuP2zYQvutXDJwFTO5Sm5XdAEUAAm2D-rSbFkEAHxTX4JqULUQWjRHllf59h6RjS84GucUHkZzHN988SB8VsmkneuGmPFnIo9k4iyyf3XZpL7oVT9qzLJ2JBxIcz4JMzP05nNZFaSq9frZtrRuQwFgn0rmYcQGsF2km3nGeJJjJnB3Tlt-6u5Y0TjyIjK-SN9BJ93YOjQWHqt4aKBtgXpfgTOZnBnPyy8RvKYs7_t9sxQcwCVZl42SOmcAZHf8oa2dQbVyiTQFr9kEGA_4-AfqhIEfXOIVOgDO15vJDULyBR-OmDezVVwMKirbeuNLWgOV258AWBTgL5qiqVjkyqMGH2aKqwB4NgtsR-U2LR3Mf4HzsqqzN-psZO20oYmQS2BjXYg2fPrG63RssN6q6OAw87pv2uWGdxPxhJaCnNfM1GOWR-z550BgfpS6LgqFwUaqXcnGNcKuR8n5qK1ceqr6st-BeLMTCN5Tv1rgd5bYtj4aOOwPaOjig1S1V14Mu5ThHvRxQoJlgjvux0D6agFTjmaReVG33CiNyCvqgvgL3sgH-qW2f__zr8e-w37l9de_Uc2VYHgQ5Tm6-UDpAcUTPbyYCFisxViFx9AocKNwNhIGchDEbl3lgpiOA99Z4jbtgZ_gY-DrVIdBSRh_4svElHgIvB3ZkRtXwrQzrj3yW11xq0I1XxI4MA8cuRARvRd16At1DCh9Bd4GANxl5BZ-byCTsw3YMEkRPuk8_RhRvtwoA1P-Erv6_j_98_u6qUp2dkfmktjXVflJU9iUsbTdZnW7NQR4q69bD94ctBNy-8iDFUSks-stM1xXCOzC4fKG7p-bGp4AMz-rvbtBPZzrwu5NwUKj2xtF1XnuyDF8ZI0EPxuZrbZpGzi_eZQGxBjImfyH7LZXSJ9KE6WRDQB-CljTK-Nvsdz52DuSA2ClE-8JoLmXpn1G8g_t39BDwKNjYyqKcotHTCy1TjYhRO34ZMd_HEbMtGlOfuHX7shbdXnXylfZTW_LsfRy63hv2PzLMLobNjigcBKjmQIZrVPQfIDPhA8lLNP8RHlNegP2H_w9xpCjx
https://sagecell.sagemath.org/?z=eJy1VFFv2jAQfvevOFEkHGrYuqnVNMnSNmk8td1UVeKBIpTGDlgNdnR2KPn3O8dpC6x7XB6wuXzf3Xff2dnlyEd70YowythM7nQRHPLFpBX7ZcbwNXA5LpznIRNwOfbG0o5eBx9yDPIjC9oq-WlcG8YSYVUaXanVo2us8iCB872YXIkr4vM27TLG2Blc6zDysM2fNORQNrYIxllAs94EcGUJwYHe5VWTBwJYMDboNeYVuJ1GCBvjoWhwp6dM6RIqY_XqBcL7jVXZVwb0oA4NWri747bZajRFXr2BD9BT3zx6vpe4-LgU0NJ6sSTdqVlaqdeMXpF-hVKZsuQoQsbUXM5OWWOFcAY3TRVMXbXGriE8O0gWeeptrcOG-libnaa_Gw3KBajRqaYIbC6P-1FzKkl2kvfRURUrCJgo7MSoWdXs31FABNa9OkkWY2kE999_XP9km7CtpiF_rDRfsAUOhg8kEyifaLPhQMBsKd7CSBpiEPtgGAJZt9YU4uHEqh6iEjGyFB7mmvHXlKnQaQsvCeYy4eGhiDYdJpz3GIJQh6D69V_4-WF9C8rHYHL2pVhyMzEjghy_AdXCBG5B7buiEfLK6PDDVL3bd9vjBF3oRrWT25Qh4pYsHqQz-H396559i-PBnGYfT_OKk41By8WgrNzzQNDS7AfL_jTXsq5cWB1eNz4TMH7n_mWJcC6hzjHf6kBnfxXZdHD_npegW1U8We29_JyYpoSkRCYlSUB8Sodg6FKC78bPDxPF1LRMUiz7cPEleyN2goAU5YjumdPwpYnfBjyH6SXdmiwFClc5lCPUapSk6OpIDPnx38VEA4_UrFFr2-vpfvyGWLWA3Ndk_gpz-obJi-wPG3Sl-A
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2. Compute the numerator of the fraction in the previous part by multiplying s̄ =
∑

(value·weight)∑
weight

each score by how many times it occurs, rather than adding it in the sum
that many times. Again, write down the calculation for s̄ before doing any
arithmetic.

3. Compute s̄ by splitting up the fraction in the previous part into the sum s̄ =
∑

(value · (% of stuff))

of four numbers. This is called a “weighted average” because we are
multiplying each score value by a weight.

4. Another way of thinking about the average s̄ is that s̄ is the number so (number of values)s̄ =
∑

values
(
∑

weight)s̄ =
∑

(value · weight)that if all 11 scores were the same value s̄, you’d have the same sum of
scores. Write this way of thinking about these computations by taking
the formulas for s̄ in the first two parts and multiplying both sides by the
denominator.

In the next problem, we generalize the above ways of thinking about averages
from a discrete situation to a continuous situation. You did this in first-semester
calculus when you did average value using integrals.

Problem 8.16 Suppose the price of a stock is $10 for one day. Then the
price of the stock jumps to $20 for two days. Our goal is to determine the
average price of the stock over the three days.

1. Why is the average stock price not $15?

2. Let f(t) =

{
10 0 < t < 1

20 1 < t < 3
, the price of the stock for the three-day period.

Draw the function f , and find the area under f where t ∈ [0, 3].

3. Now let y = f̄ . The area under f̄ over [0, 3] is simply width times height,
or (b − a)f̄ . What should f̄ equal so that the area under f̄ over [0, 3]
matches the area under f over [0, 3].

4. We found a constant f̄ so that the area under f̄ matched the area under
f . In other words, we solved the equation below for f̄ :∫ b

a

f̄dx =

∫ b

a

fdx

Solve for f̄ symbolically (without doing any of the integrals). This quantity
is called the average value of f over [a, b].

5. The formula for f̄ in the previous part resembles at least one of the ways Instructor: I also write
f̄ =

∫ b
a f

dx∫ b
a dx

to emphasize the

weighted average approach

of calculating averages from Problem 8.15. Which ones and why?

Ask me in class about the “ant farm” approach to average value. Instructor: I talk about ants
building a mound. Then after
removing the ants, so none get
hurt, you shake their tank. The
average value is the height of the
dirt. The mountains filled in the
valleys.

Problem 8.17 Consider the elliptical curve C given by the parametrization

Watch a YouTube video.

~r(t) = (2 cos t, 3 sin t). Let f be the function f(x, y) = 9− x2 − y2.

1. Draw the surface f in 3D. Add to your drawing the curve C in the xy
plane. Then draw the sheet whose area is given by the integral

∫
C
fds.

2. What’s the maximum height and minimum height of the sheet? See problem 6.25.

http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
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3. We’d like to find a constant height f̄ so that the area under f , above C,
is the same as area under f̄ , above C. This height f̄ is called the average
value of f along C. Explain why the average value of f along C is Instructor: Again, I emphasize

how this relates to the ways of
computing averages from
Problem 8.15.f̄ =

∫
C
fds∫

C
ds

.

Connect this formula with the ways of thinking about averages from
Problem 8.15. [Hint: The area under f̄ above C is

∫
C
f̄ds. The area under

f above C is
∫
C
fds. Set them equal and solve for f̄ . ]

4. Use a computer to evaluate the integrals
∫
C
fds and

∫
C
ds, and then give You can use the Sage line integral

calculator.an approximation to the average value of f along C. Is your average value
between the maximum and minimum of f along C? Why should it be?

Problem 8.18 The temperature T (x, y, z) at points on a wire helix C given Instructor: After this problem, I
like to emphasize that they should
have noticed a linear growth rate,
and then I show them how I
would have guessed the answer.

by ~r(t) = (sin t, 2t, cos t) is known to be T (x, y, z) = x2 + y + z2. What are the
temperatures at t = 0, t = π/2, t = π, t = 3π/2 and t = 2π? You should notice
the temperature is constantly changing. Make a guess as to what the average
temperature is (share with the class why you made the guess you made—it’s OK
if you’re wrong). Then compute the average temperature of the wire using the
integral formula from the previous problem. You can do all these computations
by hand.

8.4 Physical Properties

A number of physical properties of real-world objects can be calculated using the
concepts of averages and line integrals. We explore some of these in this section.
Additionally, many of these concepts and calculations are used in statistics.

8.4.1 Centroids

Definition 8.D: Centroid. Let C be a curve. If we look at all of the x-
coordinates of the points on C, the “center” x-coordinate, x̄, is the average of
all these x-coordinates. Likewise, we can talk about the averages of all of the y
coordinates or z coordinates of points on the function (ȳ or z̄, respectively). The
centroid of an object is the geometric center (x̄, ȳ, z̄), the point with coordinates
that are the average x, y, and z coordinates.

Problem 8.19: Centroid Notice the word “average” in the definition of Watch a YouTube video.

the centroid. Use the concept of average value to explain why the coordinates
of the centroid are

x̄ =

∫
C
xds∫

C
ds

, ȳ =

∫
C
yds∫

C
ds

, and z̄ =

∫
C
zds∫

C
ds

.

Notice that the denominator in each case is just the arc length s =
∫
C
ds.

3We just reverse the order and change a sign to get ~N1 =
(−4, 3)

5
and ~N1 =

(4,−3)

5
as

the orthogonal vectors.

https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
https://sagecell.sagemath.org/?z=eJx1VE1v2zAMvRvwfyCSApFdN2vS0wr4EOw0YKd2wA5pGqgy7Qi1JUOSm-Tfj5LsrC26XEKTj9-Pms9_HxCErhBesNVHOMq2hVqqChwZ7GBqLhC4QQ66Bn7RuAN30Eq0o1_NTsU5A06O_EW_YXAXgyHJMJeBVEFzOkPfcoVLgDSJPuX3m9Pz-ub8vE4TDy3ZOhfaklTAXW6lIilLE2e4arBkrrgt1nkvSZUmlS3NspJ1TZil0qZjpK42Zc1yHyrLKx_HI-fwC93CQsdfqR2oByWc1AqMbA6OWqvBacA33g7cEUBRwQ4bw1ugZgzVLm1sJ1Q-_4MLmtNgfSw1dGikIOjkU9BQBPdWqzt0sqMxHRG6kEtpR2aaUos-Z4POp8MTF-4SYEldYE3zVbifdGwUVJXdpwnQz6AbjIKHB3Yp4Qt0AXF029XuIq532fZ2FwazgfJTnmoTDGlycF27dL5Qtk2TrZldxY1dzYoo7IqofnpDEdZMFv836auL4VvlvG3aFXPlO5QlU1hUQR-E--duZdPxsoYI2Xy0P45U3HhyXpUQ0VA-USf7HzB6bTx6N3YUmPDb79Ji3L_ngw3U7FvtIsffMZ8WYVbEuYFo6fugqRWhoTDNIZ-IRvEDO_a692FtWUnhmNCtNuXCYLUoiEHiVaG15d0EtmXPDSeC0Or2Pj0LuW6zaU9Fnn-Iml1_6bDKiv_g08QeEN0XeSYPNtA9rbKA1EcW67oOXvFuftZhHpdzoNlV2nOi8HoVLyO8Go0cz_7CYrqU3tAXzPwrEynuTwz9nD9HZUcuHdTa0AZepMvuZ_7ozyPXQ3Uj3CFxdJqRLx1PAns3IseMj7zxD9vQVuHihO76wX2sL1bUnpezv9Dcmfg=&lang=sage
http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
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Problem 8.20 Let C be the semicircular arc ~r(t) = (a cos t, a sin t) for t ∈
[0, π]. Without doing any computations, make an educated guess for the centroid
(x̄, ȳ) of this arc. Then compute the integrals given in problem 8.19 to find the
actual centroid. Share with the class your guess, even if it was incorrect.

8.4.2 Mass and Center of Mass

Density is generally a mass per unit volume. However, when talking about a
curve or wire, as in this chapter, it’s simpler to let density be the mass per
unit length. Sometimes an object is made out of a composite material, and the
density of the object is different at different places in the object. For example,
we might have a straight wire where one end is aluminum and the other end
is copper. In the middle, the wire slowly transitions from being all aluminum
to all copper. The centroid is the midpoint of the wire. However, since copper
has a higher density than aluminum, the balance point (the center of mass)
would not be at the midpoint of the wire, but would be closer to the denser
and heavier copper end. In this section, we’ll develop formulas for the mass and
center of mass of such a wire. Such composite materials are engineered all the
time (though probably not our example wire).

Problem 8.21: Mass Suppose a wire C has the parameterization ~r(t) for Watch a YouTube video.

t ∈ [a, b]. Suppose the wire’s density at a point (x, y, z) on the wire is given by
the function δ(x, y, z).

1. Consider a small portion of the curve at t = t0 of length ds. Explain why
the mass of the small portion of the curve is dm = δ(~r(t0))ds.

2. Explain why the mass m of an object is given by the formulas below
(explain why each equals sign is true):

m =

∫
C

dm =

∫
C

δds =

∫ b

a

δ(~r(t))

∣∣∣∣d~rdt
∣∣∣∣ dt.

Problem 8.22 A wire lies along the straight segment from (0, 2, 0) to (1, 1, 3). See Larson 15.2:23–26 for more
practice.The wire’s density (mass per unit length) at a point (x, y, z) is δ(x, y, z) =

x+ y + z.

1. Is the wire heavier at (0, 2, 0) or at (1, 1, 3)?

2. What is the total mass of the wire? [You’ll need to parameterize the line
as your first step—see Problem 2.9 if you need a refresher.]

Instructor: Here I introduce the
center of mass of an object, talk
about moments, and talk about
how the center of mass formula is
also an averaging of the
coordinates, where the weight is
the amount of mass at a particular
coordinate value (i.e., xdm).

The center of mass of an object is the point where the object balances.

Wikipedia has some interesting
applications of center of mass.

In order to calculate the x-coordinate of the center of mass, we average the
x-coordinates, but we weight each x-coordinate with its mass. Similarly, we can
calculate the y and z coordinates of the center of mass.

The next problem helps us reason about the center of mass of a collection of
objects. Calculating the center of mass of a collection of objects is important,
for example, in astronomy when you want to calculate how two bodies orbit
each other.

http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
http://en.wikipedia.org/wiki/Center_of_mass
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Problem 8.23 Suppose two objects are positioned at the points P1 = Instructor: After a student
presents, this is a great time to
connect the averages back to
Problem 8.15. I point out that we
can think about the object as 2
points of the same mass at P1 and
3 points of the same mass at P2.
This suggests averaging 5 things
with method 1. Alternately, I
suggest the approach 2

5
P1 + 3

5
P2,

suggesting a weighted average.

(x1, y1, z1) and P2 = (x2, y2, z2). Our goal in this problem is to understand the
difference between the centroid and the center of mass.

1. Find the centroid of two objects.

2. Suppose both objects have the same mass of 2 kg. Find the center of mass. Instructor: I found many
students struggled with setting up
a really simple sum. In class, after
they present this one, I would
suggest actually taking time to
show them how to write the
problem in summation notation
with 2 points. It will prepare
them for the proof of center of
mass coming up.

3. If the mass of the object at point P1 is 2 kg, and the mass of the object
at point P2 is 5 kg, will the center of mass be closer to P1 or P2? Give
a physical reason for your answer before doing any computations. Then
find the center of mass (x̄, ȳ, z̄) of the two points. [Hint: You should get
x̄ = 2x1+5x2

2+5 .]

Problem 8.24 This problem reinforces what you just did with two points
in the previous problem. However, it now involves two people on a seesaw.
Ignore the mass of the seesaw in your work below (pretend it’s an extremely See Wikipedia for a seesaw

picture.light seesaw, so its mass is negligible compared to the masses of the people).

1. My daughter and her friend are sitting on a seesaw. Both girls have the
same mass of 30 kg. My wife stands about 1 m behind my daughter. We’ll
measure distance in this problem from my wife’s perspective. We can
think of my daughter as a point mass located at (1m, 0) whose mass is 30
kg. Suppose her friend is located at (5m, 0). Suppose the kids are sitting
just right so that the seesaw is perfectly balanced. That means the the
center of mass of the girls is precisely at the pivot point of the seesaw.
Find the distance from my wife to the pivot point by finding the center of
mass of the two girls.

2. My daughter’s friend has to leave, so I plan to take her place on the seesaw.
My mass is 100 kg. Her friend was sitting at the point (5, 0). I would like
to sit at the point (a, 0) so that the seesaw is perfectly balanced. Without
doing any computations, is a > 5 or a < 5? Explain.

3. Suppose I sit at the spot (x, 0) (perhaps causing my daughter or I to have
a highly unbalanced ride). Find the center of mass of the two points (1, 0)
and (x, 0) whose masses are 30 and 100, respectively (units are meters and
kilograms).

4. Where should I sit so that the seesaw is perfectly balanced (what is a)?

Problem 8.25: Center of mass In problem 8.23, we focused on a system Watch a YouTube video.

with two points (x1, y1) and (x2, y2) with masses m1 and m2. The center of
mass in the x direction is given by

x̄ =
x1m1 + x2m2

m1 +m2
=

∑2
i=1 ximi∑2
i=1mi

1. If we consider a system with 3 points, what formula gives the center of
mass in the x direction? What if there are 4 points, 5 points, or n points?

2. Suppose now that we have a wire located along a curve C. The density
of the wire is known to be δ(x, y, z) (which could be different at different
points on the curve). Imagine cutting the wire into a thousand or more
tiny chunks. Each chunk would be centered at some point (xi, yi, zi) and
have length dsi. Explain why the mass of each little chunk is dmi ≈ δdsi.

http://en.wikipedia.org/wiki/Seesaw
http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
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3. Give a formula for the center of mass in the y direction of the thousands
of points (xi, yi, zi), each with mass dmi. [This should almost be an exact
copy of the first part.] Then explain why

ȳ =

∫
C
ydm∫

C
dm

=

∫
C
yδds∫

C
δds

.

Ask me in class to show you another way to obtain the formula for center of
mass. It involves looking at masses weighted by their distance (called a moment
of mass). You may have already seen an idea similar to this in other classes, like
statics (using moments of force) or statistics (in computing expected values).

For quick reference, the formulas for the centroid of a wire along C are

x̄ =

∫
C
xds∫

C
ds

, ȳ =

∫
C
yds∫

C
ds

, and z̄ =

∫
C
zds∫

C
ds

. (Centroid)

If the wire has density δ, then the formulas for the center of mass are The quantity
∫
C xdm is

sometimes called the first moment
of mass about the yz-plane (so
x = 0). Notationally, some people
write Myz =

∫
C xds. Similarly, we

could write Mxz =
∫
C ydm and

Mxy =
∫
C zdm. With this

notation, we could write the
center of mass formulas as

(x̄, ȳ, z̄) =

(
Myz

m
,
Mxz

m
,
Mxy

m

)
.

x̄ =

∫
C
xdm∫

C
dm

, ȳ =

∫
C
ydm∫

C
dm

, and z̄ =

∫
C
zdm∫

C
dm

, (Center of mass)

where dm = δds. Notice that the denominator in each case is just the mass
m =

∫
C
dm.

We’ll often use the notation (x̄, ȳ, z̄) to talk about both the centroid and the
center of mass. If no density is given in a problem, then (x̄, ȳ, z̄) is the centroid.
If a density is provided, then (x̄, ȳ, z̄) refers to the center of mass. If the density
is constant, it doesn’t matter (the centroid and center of mass are the same,
which is what the seesaw problem showed).

Problem 8.26 Suppose a wire with density δ(x, y) = x2 + y lies along the Instructor: I purposefully put
this problem in to show students
how to generalize a formula from
prime numbers to any number. I
mention how I use primes (5, 7, 11,
13) when I’m looking for a pattern.
I want to help them develop this
skill a little. However, if you are
pressed for time, then skip 5.

Check your work with Sage

curve C which is the upper half of a circle around the origin with radius 7.

1. Parametrize C (find ~r(t) and the domain for t).

2. Where is the wire heavier, at (7, 0) or (0, 7)? [Compute δ at both.]

3. In problem 8.20, we showed that the centroid of the wire is (x̄, ȳ) =(
0, 2(7)π

)
. We now seek the center of mass. Before computing, will x̄

change? Will ȳ change? How will each change? Explain.

4. Set up the integrals needed to find the center of mass. Then use technology
to compute the integrals. Give an exact answer (involving fractions), rather
than a numerical approximation.

5. Change the radius from 7 to a, and guess what the center of mass will be.
(This is why you need the exact answer above, not a numerical answer).

8.5 The Fundamental Theorem of Line Integrals

In this final section, we’ll return to the concept of work. Many vector fields are
actually the derivative of a function, called the potential function of the vector
field. In this section, we’ll first discuss finding the potential of such a vector
field. Then we’ll show that the work done by such a vector field is the difference
in the potential at the end points. This is much simpler than calculating a line
integral.

http://sagecell.sagemath.org/?z=eJyFVk1v6jgU3SPxH6wWCYcaGtr3VGkkrzobFiON2AKN3MRANHGSuTZM_Kr-97l2DISvGVjE8T333A_fYwCppaFRv7cXQIcNs8wM8S2Tpc6NpbgR8ebj5cn2e8D3MjUV0MXbKK00NREjbyOdl7haoY_RRoDhMa5kmfE6x0UCotxITg1rrcyZEOu-kNSQK0k4yfL1mgIzLrDmx7dJWYFyuWmel0ZuQBQ002wUWNGQytJAlWdJw0ta7pSEPBVFckTTZpTpiDYcFvEK0w1JEJ8Fbj3rLom9Q2I9iUWS6V2STHHabVonLiPBtd9TTAJUwG9EydQFc78n9pskcGKT1LNu-5bJNSnyUp58wwKdfuv3CH5Amh2UZD6_Wc8JPtG7T32Z5nWF_sBUpbBRifisdiaxiWhyzc_TwGar6ALY3ALaFugaLyFRQuukwQrpjRDPCseAXoDtFbg5B7vv46xhM8tmMYIX9_pF1hWQ4yuuCLUfLyN3GE37pH76P14il_MKaecuVf03GDprnl0Zj3N73LFhJz7uxH6n31tDpYgWGzlRuU4nW6MKkqu6AkOUMNukFqAlEZqo2sGdfWLEZyHpot9bqJrCw-9hFgbLTBZG-DkbPOB5hSFZsQPyfQd7iTgULAGUp0PByTwwA-Il5JyDmjrW1m0Y_EjQaQeQ6QEjAofQmEKSz9yQak0EpIUsN2brM9IduB6Q8bm5Y30P6iM0rUqcu9IcyomwgEKuDV2uQaRf0-8v9b3EsyLNkuE1cLlr3e4S8s025E1PtwM7aTzq1qF420rM1-d4UZIbNl-N6jihjwt35ngAdnBiLwFP-1AM1nKRL3o-RAT7eFK5G95OpD_wRmoLxgx8GD_yxI88GdgBcUPv414L54ynaXnsTZ7mDk9zwfPuFXjoy9nhTBVpE3XCOduxmbo6k6PmGTlTta_9MSQ981dCy_Hx4hJ3_rNmxY6AQ3c6Ztsxx635KOADJu6GmbveOKV-YcBn9e0h81OUuYsS7Cjub2-2HXN8NMeteR7jLdFemTVHVQslDd7ASV1UBn_WDnrDxTZP_yql1vwHousnXleYL_3vFrG0KvAHZAgyGzLvoPNfkv-M2a8KMgl8Gl-RBQ2QjgjwpeXZgJTlkJG7VI_IleZOvJTGLHb1MXebamMLyYeZ0FtMJQCdgS4W41fmW-gfq1vwpxNyHKDje9gz6rll41fE4_P1f6gP0PF9rO9UEF97QOEFr302fmNvEaOWxe6ZKlHz4Z87qAupnafeVv_QGvWra_xbhIdq8opP0fAvvO4FyQ==&lang=sage
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Definition 8.E: Gradients and Potentials. Let ~F be a vector field. A Watch a YouTube Video.

potential for the vector field is a function f whose derivative equals ~F . So if
Df = ~F , then we say that f is a potential for ~F . When we want to emphasize
that the derivative of f is a vector field, we call Df the gradient of f and write
Df = ~∇f . If ~F has a potential, then we say that ~F is a gradient field. The symbol ~∇f is read “the

gradient of f” or “del f.”

We’ll quickly see that if a vector field has a potential, then the work done
by the vector field is the difference in the potential. If you’ve ever dealt with
kinetic and potential energy, then you hopefully recall that the change in kinetic
energy is precisely the difference in potential energy. This is the reason we use
the word “potential.”

Problem 8.27 Let’s practice finding gradients and potentials. Watch a YouTube Video.

1. Let f(x, y) = x2 + 3xy + 2y2. Find the gradient of f , i.e., find Df(x, y).
Then compute D2f(x, y) (you should get a square matrix). What are fxy
and fyx?

2. Consider the vector field ~F (x, y) = (2x+ y, x+ 4y). Find the derivative of
~F (x, y) (it should be a square matrix). Then find a function f(x, y) whose

gradient is ~F (i.e., Df = ~F ). What are fxy and fyx?

3. Consider the vector field ~F (x, y) = (2x+ y, 3x+ 4y). Find the derivative See problem 6.15.

of ~F . Why is there no function f(x, y) so that Df(x, y) = ~F (x, y)? [Hint:
what would fxy and fyx have to equal?]

Based on your observations in the previous problem, we have the following
key theorem.

Theorem 8.F. Let ~F be a vector field that is everywhere continuously differen-
tiable. Then ~F has a potential if and only if the derivative D~F is a symmetric
matrix. We say that a matrix is symmetric if interchanging the rows and columns
results in the same matrix (so if you replace row 1 with column 1, and row 2
with column 2, etc., then you obtain the same matrix).

Problem 8.28 For each of the following vector fields, find a potential, or If you haven’t yet, please watch
this YouTube video.explain why none exists.

1. ~F (x, y) = (2x− y, 3x+ 2y)

2. ~F (x, y) = (2x+ 4y, 4x+ 3y)

3. ~F (x, y) = (2x+ 4xy, 2x2 + y)

4. ~F (x, y, z) = (x+ 2y + 3z, 2x+ 3y + 4z, 2x+ 3y + 4z)

5. ~F (x, y, z) = (x+ 2y + 3z, 2x+ 3y + 4z, 3x+ 4y + 5z)

6. ~F (x, y, z) = (x+ yz, xz + z, xy + y)

7. ~F (x, y) =

(
x

1 + x2
+ arctan(y),

x

1 + y2

)

If a vector field has a potential, then there is an extremely simple way to
compute work. To see this, we must first review the fundamental theorem of
calculus. The second half of the fundamental theorem of calculus states

http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
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If f is continuous on [a, b] and F is an anti-derivative of f , then

F (b)− F (a) =
∫ b
a
f(x)dx.

If we replace f with f ′, then an anti-derivative of f ′ is f , and we can write,

If f is continuously differentiable on [a, b], then

f(b)− f(a) =

∫ b

a

f ′(x)dx.

This last version is the version we now generalize.

Theorem 8.G (The Fundamental Theorem of Line Integrals). Suppose f is a Watch a YouTube video.

continuously differentiable function, defined along some open region containing
the smooth curve C. Let ~r(t) be a parametrization of the curve C for t ∈ [a, b].
Then we have

f(~r(b))− f(~r(a)) =

∫ b

a

Df(~r(t))D~r(t) dt.

Notice that if ~F is a vector field, and has a potential f , which means ~F = Df ,
then we could rephrase this theorem as follows.

Suppose ~F is a vector field that is continuous along some open region
containing the curve C. Suppose ~F has a potential f . Let A and B
be the start and end points of the smooth curve C. Then the work
done by ~F along C depends only on the start and end points, and is
precisely

f(B)− f(A) =

∫
C

~F · d~r =

∫
C

Mdx+Ndy.

The work done by ~F is the difference in a potential, f(B)− f(A).

If you are familiar with kinetic energy, then you should notice a key idea here.
Work is a transfer of energy. As an object falls, energy is transferred from
potential energy to kinetic energy. The total kinetic energy at the end of a fall is
precisely equal to the difference between the potential energy at the top of the
fall and the potential energy at the bottom of the fall (neglecting air resistance).
So work (the transfer of energy) is exactly the difference in potential energy.

Problem 8.29: Proof of Fundamental Theorem Suppose f(x, y) is con-The proof of the fundamental
theorem of line integrals is quite
short. All you need is the
fundamental theorem of calculus,
together with the chain rule (6.G).

tinuously differentiable, and suppose that ~r(t) for t ∈ [a, b] is a parametrization

of a smooth curve C. Prove that f(~r(b))− f(~r(a)) =
∫ b
a
Df(~r(t))D~r(t) dt. [Let

g(t) = f(~r(t)). Why does g(b)− g(a) =
∫ b
a
g′(t)dt? Use the chain rule (matrix

form) to compute g′(t). Then just substitute things back in.]

Problem 8.30 For each vector field and curve below, find the work done by Watch a YouTube video.

~F along C. In other words, compute the integral
∫
C
Mdx+Ndy or

∫
C
Mdx+

Ndy + Pdz.

1. Let ~F (x, y) = (2x+ y, x+ 4y) and C be the parabolic path y = 9− x2 for See Sage for a picture.

x from −3 to 2.

2. Let ~F (x, y, z) = (2x+ yz, 2z + xz, 2y+ xy) and C be the straight segment See Sage for a picture.

from (2,−5, 0) to (1, 2, 3).

http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
https://sagecell.sagemath.org/?z=eJxz06jQqdS01TDSqtCu1KnQNtGq1OQqyMkviS9LTS7JL4pPy0zNSdFw01EAKtQ11jHSBLIqdQx0LDU1tUHqNCx1K-KMdGCymgDJPhZ0
https://sagecell.sagemath.org/?z=eJwVi7EKgDAMRPd-hWPSRtCIo6s_IdJBKwhFRYo0_XrT6R5372bIJFRwArbZiS3Etris2bAVBUHzxDv5L2zpfv1xhrgPO8zU6LMnRgWhdqwEhToaEF08rwALcO27aqiow4rmBwN1HWM
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[Hint: If you parametrize the curve, then you’ve done the problem the HARD
way. Did you try to find a potential function for the vector field?]

Problem 8.31 Let ~F = (x, z, y). Let C1 be the curve which starts at (1, 0, 0) See Sage—C1 and C2 are in blue,
and several possible C3 are shown
in red.

and follows a helical path (cos t, sin t, t) to (1, 0, 2π). Let C2 be the curve which
starts at (1, 0, 2π) and follows a straight line path to (2, 4, 3). Let C3 be any
smooth curve that starts at (2, 4, 3) and ends at (0, 1, 2).

• Find the work done by ~F along each path C1, C2, C3. If you are parameterizing the
curves, you’re doing this the really
hard way. Are you using the
potential of the vector field?

• Find the work done by ~F along the path C which follows C1, then C2,
then C3.

• If C is any path that can be broken up into finitely many smooth sub-paths,
and C starts at (1, 0, 0) and ends at (0, 1, 2), what is the work done by ~F
along C?

In the problem above, the path we took to get from one point to another
did not matter. The vector field had a potential, which meant that the work
done did not depend on the path traveled.

Definition 8.H: Conservative Vector Field. We say that a vector field is
conservative if the integral

∫
C
~F · d~r does not depend on the path C. We say

that a curve C is piecewise smooth if it can be broken up into finitely many
smooth curves.

Review Compute

∫
x√

x2 + 4
dx. See 4.

Problem 8.32 The gravitational vector field is directly related to the radial Instructor: While ~F is not
continuously differentiable
everywhere (it’s not at the origin),
we can still use the fundamental
theorem of line integrals if we stay
away from the origin. This shows
that ~F is a conservative vector
field, provided we dodge the
origin.

field ~F =
(−x,−y,−z)

(x2 + y2 + z2)3/2
. Show that this vector field is conservative by

finding a potential for ~F . Then compute the work done by an object that moves
from (1, 2,−2) to (0,−3, 4) along ANY path that avoids the origin.

[See the review problem just before this if you’re struggling with the integral.]

Problem 8.33 Suppose ~F is a gradient field. Let C be a piecewise smooth
closed curve (closed means the starting and ending points are the same). Com-

pute
∫
C
~F · d~r (you should get a number). Explain how you know your answer

is correct.

8.5.1 “Nice” sets (Optional)

The above results connecting path independence and gradient fields assume that
the function is defined on a “nice” domain set. Here we will discuss in (brief)
technical detail what a “nice” set is and what goes wrong when you have a
set that is not so nice. This would all be explored in much more detail in an
advanced calculus, real analysis, or algebraic topology class.

4 Let u = x2 + 4, which means du = 2xdx or dx = du
2x

. This means∫
x

√
x2 + 4

dx =

∫
x
√
u

du

2x
=

1

2

∫
u−1/2du =

1

2

u1/2

1/2
=
√
u =

√
x2 + 4.

https://sagecell.sagemath.org/?z=eJytkM1uhCAUhfc-hTsueMmMYNOV23mJydQYpR1SK0TItPr0hVFbm5kumnQBl597zvngUg9APKHJAT5wxImWoU440sRY78pWNx78WTevvXKulDSxpe2Mry6q8WaonrXqWtnCAdOg4zkKGlYj8gILijAhl_hIgyorbT3Ub8oPuqmiA0BjHPjQ7nR_rXGAxz0KZjVFxiLBVdrpXsER8q-7FAQWKOkJ07UtzkfSmM4M5FSSQbVkI53bgy567Le6e2SCr0wFmykZ5Dzu5bJfUa3eiR-ov3oxwfzO6tVSsm-7B_YPhuFgLllnXiDPIrPns92SEzPnhzyJP-RlMe-qvX3CbWa-4G0-a3N4P9adzTtYmnwCd8u7lQ
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F = ∇f

∫
C

~F · d~r is

independent of
path C

My = Nx
Mz = Px
Nz = Py

∮
C

~F · d~r = 0

(closed path C)

~F has continous partials

D connected

~F has continous partials

D connected and simply connected

Figure 8.1: Equivalences for nice sets

Let ~F = 〈M,N,P 〉 be continuous on an open set D. In the diagram in
Figure 8.1, the arrows represent implications (i.e., if there is an arrow from one
statement pointing to another, then the first statement being true implies that
the second statement is true). A label on the arrow means that the condition
has to be satisfied for the implication to be hold. The definitions of the terms
are in the book (or you can ask me).

Using terms from the book, a “nice” set is a set that is open, connected, and
simply connected. Roughly, this means that D does not include its boundary
and is a single region without any holes going through it. For such a “nice” set,
all four statements in Figure 8.1 are equivalent (i.e., either they are all true or

they are all false for a given vector field ~F ).
If the set D is not connected, then path-independence does not imply the

vector field is a gradient field. In this case, discrepancies can occur between the
two definitions for “conservative vector field”.

There is a homework problem that shows that the bottom arrow does not
hold when D is not simply connected. When D is not connected and simply
connected, we lose the nice, easy test in the lower left of the figure for determining
exactly when a vector field is a gradient field.



Chapter 9

Optimization

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain the properties of the gradient, its relation to level curves and level
surfaces, and how it can be used to find directional derivatives.

2. Find equations of tangent planes using the gradient and level surfaces.
Use the derivative (tangent planes) to approximate functions, and use this
in real world application problems.

3. Explain the second derivative test in terms of eigenvalues. Use the second
derivative test to optimize functions of several variables.

4. Use Lagrange multipliers to optimize a function subject to constraints.

You’ll have a chance to teach your examples to your peers prior to the exam.

9.1 The Gradient

Recall from the previous unit that the derivative Df of a function f : Rn → R
(one output dimension) is called the gradient of f , and written ~∇f , when we
want to emphasize that the derivative is a vector field.

Problem 9.1 Consider the functions f(x, y) = 9− x2− y2, g(x, y) = 2x− y,
and h(x, y) = sinx cos y.

1. Compute ~∇f(x, y). Then draw both ~∇f and several level curves of f on See Sage. You can modify these
commands to help in the plots
below too.

the same axes.

2. Compute ~∇g(x, y). Then draw both ~∇g and several level curves of g on Instructor: Sage

the same axes.

3. Compute ~∇h(x, y). Then draw both ~∇h and several level curves of h on Instructor: Sage

the same axes.

4. What relationships do you see between the gradient vector field and level
curves?

When you present in class, be prepared to provide rough sketches of the level
curves and gradients of each function.
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https://sagecell.sagemath.org/?z=eJxljLEOwiAURXe-oltBHybSyeFtjV_gXIIIEYM-QqmWvxejm8vNyc3J8XyFKvAg10nJOik2-u_Dpdqs0LWtgrGElh6FlqxTpMI9NEkOMAjg9Qc-xIhHE2cH9m4S9jdXerAUKZ9NxlNenGBpi5-AfjpbKGsfXLzw0UP312vubr7Si5s5NVlnUwLhXrwBPnA2AQ
https://sagecell.sagemath.org/?z=eJxljDEOwjAMAPe-gq0OuJWgs1dewB6FNBZBAUdOCs3vKRIb20mnO4YVm6HTfh1al8nLs8qiNiepwLjJYcLJILQfcEyJzi6VgP7hMvX3UHv0kkSvTumiSzBdPtB3YF_BV1HLMaQZeJwjMxjc_V23Yiw3eYMreUusuhqFjuYDVjExog
https://sagecell.sagemath.org/?z=eJxlzDEOwjAMheGdU7DVAVMJdfbKCdijkMYiKNSRk0Jze4LExvaG938MGzZDJS6wmYOXAs3sMnlZqqxqc5IKjP10mnAyCO03OKZEF5dKQP90mYZHqAN6SaI3p3TVNXTnSF_AvoKvopZjSDPwOEdmMLj_U3sxlru8wZXcE6uuRqGz-QAbgzR0
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The next few problems will focus on explaining why the relationships you
saw are always true.

Problem 9.2 Suppose ~r(t) is a level curve of f(x, y).

1. Suppose you know that at t = 0, the value of f at ~r(0) is 7. What is the
value of f at ~r(1)? [What does it mean to be on a level curve?]

2. As you move along the level curve ~r, how much does f change? Use this

to tell the class what
df

dt
must equal.

3. At points along the level curve ~r, we have the composite function f(~r(t)).

Compute the derivative
df

dt
using the chain rule.

4. Use your work from the previous parts to explain why the gradient always
meets the level curve at a 90◦ angle. We say that the gradient is normal
to level curves (i.e., a gradient vector is orthogonal to the tangent vector
of the curve).

In the derivative chapter, we extended differential notation from dy = f ′dx
to d~y = D~fd~x. The key idea is that a small change in the output variables
is approximated by the product of the derivative and a small change in the
input variables. As a quick refresher, if we have the function z = f(x, y), then
differential notation states that

dz =
[
fx fy

] [dx
dy

]
.

Problem 9.3 Suppose the temperature at a point in the plane is given by the
function T (x, y) = x2 − xy − y2 degrees Fahrenheit. A particle is at P = (2, 3).

1. Use differentials to estimate the change in temperature if the particle
moves 1 unit in the direction of ~u = (3, 4). [Hint: Find a unit vector in
that direction.]

2. What is the actual change in temperature if the particle moves 1 unit in
the direction of ~u = (3, 4)?

3. Use differentials to estimate the change in temperature if the particle
moves about .2 units in the direction of ~u = (3, 4).

We can define partial derivatives solely in terms of differential notation. We
can define derivatives in any direction in terms of differential notation.

Problem 9.4 Suppose that z = f(x, y) is a differentiable function (so the
derivative is the matrix

[
fx fy

]
). Remember to use differential notation in

this problem.

1. If (dx, dy) = (1, 0), which means we’ve moved one unit in the x direction
while holding y constant, what is dz?

2. If (dx, dy) = (0, 1), which means we’ve moved one unit in the y direction
while holding x constant, what is dz?
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3. Consider the direction ~u = (2, 3). Find a unit vector in the direction of
~u. If we move one unit in the direction of ~u, what is dz? [It’s all right to
leave you answer as a dot product.]

Definition 9.A. The directional derivative of f in the direction of the unit
vector ~u at a point P is defined to be

D~uf(P ) = Df(P )~u = ~∇f · ~u.

We dot the gradient of f with the direction vector ~u. The partial derivative
of f with respect to x is precisely the directional derivative of f in the (1, 0)
direction. Similarly, the partial derivative of f with respect to y is precisely
the directional derivative of f in the (0, 1) direction. This definition extends to
higher dimensions.

Note that in the definition above, we require the vector ~u to be a unit vector.
If you are asked to find a directional derivative in some direction, make sure
you start by finding a unit vector in that direction. We want to deal with unit
vectors because when we say something has a slope of m units, we want to say
“The function rises m units if we run 1 unit.”

Problem 9.5 Consider the function f(x, y) = 9− x2 − y2. Instructor: Sage.

1. Draw several level curves of f .

2. At the point P = (2, 1), place a dot on your graph. Then draw a unit
vector based at P that points in the direction ~u = (3, 4) [not to the point
(3, 4), but in the direction ~u = (3, 4)]. If you were to move in the direction
(3, 4), starting from the point (2, 1), would the value of f increase or
decrease?

3. Find the slope of f at P = (2, 1) in the direction ~u = (3, 4) by finding the
directional derivative. This should agree with your previous answer.

4. If you stand at Q = (−2, 3) and move in the direction ~v = (1,−1), will f
increase or decrease? Find the directional derivative of f in the direction
~v = (1,−1) at the point Q = (−2, 3).

Problem 9.6 Recall that the directional derivative of ~f in the direction ~u is

the dot product ~∇f · ~u = |~∇f ||~u| cos θ. In this problem, you’ll explain why the
gradient points in the direction of greatest increase.

1. Why is the directional derivative of ~f the largest when ~u points in the
exact same direction as ~∇f? [Hint: What angle maximizes the cosine
function?]

2. When ~u points in the same direction as ~∇f , show that D~uf = |~∇f |. In
other words, explain why the length of the gradient is precisely the slope of
f in the direction of greatest increase (the slope in the steepest direction).

3. Which direction points in the direction of greatest decrease?

https://sagecell.sagemath.org/?z=eJytzz0OgkAQBeB-T2HHbpxF-Wks5hZ2RgjCEkmQ2QwDAqcXA4UHsHvFe_nyaj3BbPBipyy2cxYrjyV1QgPnviXRNawFm0JqQM97KKklfhSMVx6cUcoL6hgio0YcXSnE-pZAejfKH9FT04n2so0wYFcFsBBXjjGCvlkcpuet-eXG0xh2xC9t4NBLwYJedsHGkPwSEdjor0bYP-mti96vQM6FNITrpw-tYFrb
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Problem 9.7 Suppose you are looking at a topographical map (see Wikipedia
for an example). On this topographical map, each contour line represents 100 ft
in elevation. You notice in one section of the map that the contour lines are
really close together, and they start to form circles around a spot on the graph.
You notice in another section of the map that the contour lines are spaced quite
far apart. Let f(x, y) be the elevation of the land, so that the topographical
map is just a contour plot of f .

1. Where is the slope of the terrain larger, in the section with closely packed Instructor: You might discuss
what it means if a contour line
intersects itself.

contour lines, or the section with contour lines that are spread out. In
which section will the gradient be a longer vector?

2. At the very top of a mountain, or the very bottom of a valley, will the
gradient be a long vector or a small vector? How do you locate a peak in
a topographical map?

3. Create you own topographical map to illustrate the ideas above. Just make If you’re stuck, look at a contour
plot of
f(x, y) = (x+1)3−3(x+1)2−y2+2
in Sage. Then make your own
example.

sure your map has a section with some contours that are closely packed
together, and some that are far apart, as well as a contour that intersects
itself. Then on your topographical map, please add a few gradient vectors,
where you emphasize which ones are long, and which ones are short. Show
us how to find a peak, as well as what the gradient vector would be at the
peak.

Theorem 9.B. Let f be a continuously differentiable function, with ~r a level
curve of the function.

• The gradient is always normal to level curves, meaning ~∇f · d~r
dt

= 0.

• The gradient points in the direction of greatest increase.

• The directional derivative of f in the direction of the gradient is the length
of the gradient. Symbolically, we write D~∇ff = |~∇f |.

• At a maximum or minimum, the gradient is the zero vector.

The next few problems have you practice using differentials, and then obtain
tangent lines and planes to curves and surfaces using differentials.

Problem 9.8 The volume of a cylindrical can is V (r, h) = πr2h. Any
manufacturing process has imperfections, and so building a cylindrical can with
designed dimensions (r, h) will result in a can with dimensions (r + dr, h+ dh).

1. Compute both DV (the derivative of V ) and dV (the differential of V ).

2. If the can is tall and slender (h is big, r is small), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

3. If the can is short and wide (like a tuna can), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

Problem 9.9 Consider the function f(x, y) = x2 + y2. Consider the level
curve C given by f(x, y) = 25. Our goal is to find an equation of the tangent
line to C at P = (3,−4).

http://en.wikipedia.org/wiki/Topographic_map
https://sagecell.sagemath.org/?z=eJxL06jQqdS01ajQNtSMM9Y11oKwjHQr44y0jbiS8_NK8kuL4gty8ks00nSAinWNdIw0dRQ0KqGs5Pyc_KKkxCLbkKLSVE0AbVIWvQ
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1. Draw C. Compute ~∇f and add to your graph the vector ~∇f(P ).

2. We know the point P = (3,−4) is on the tangent line. Let Q = (x, y)
represent another point on the tangent line. Add to your graph the point
Q and the vector ~PQ = (x− 3, y + 4).

3. Why are ~∇f(P ) and ~PQ orthogonal? Use this fact to write an equation
of the tangent line.

4. What is a normal vector to the line?

The previous problem had you give an equation of the tangent line to a level
curve, by using differential notation. The next problems asks you to repeat this
idea and give an equation of a tangent plane to a level surface.

Problem 9.10 Consider the function f(x, y, z) = x2 + y2 + z2. Consider the
level surface S given by f(x, y, z) = 9. Our goal is to find an equation of the
tangent plane to S at P = (1, 2,−2).

1. Draw S.

2. Compute ~∇f . Add to your graph the vector ~∇f(P ), with its base at P .

3. We know the point P = (1, 2,−2) is on the tangent plane. Let Q = (x, y, z)
be any other point on the tangent plane. What is the component form of
the vector ~PQ?

4. Why are ~∇f(P ) and ~PQ orthogonal? Use this fact to write an equation
of the tangent plane.

5. What is a normal vector to the plane?

Problem 9.11 Find an equation of the tangent plane to the hyperboloid of
one sheet 1 = x2 − y2 + z2 at the point (−3, 3, 1).

Problem 9.12 The two surfaces x2 + y2 + z2 = 14 and 3x + 4y − z = −1
intersect in a curve C. Draw both surfaces, and show us the curve C. Then,
at the point (2,−1, 3), find an equation of the tangent line to this curve. [Hint:
The line is in both tangent planes, so it is orthogonal to both normal vectors.
The cross product gets you a vector that is orthogonal to two vectors.]

9.2 The Second Derivative Test

We start with a review problems from first-semester calculus.

Problem 9.13 Let f(x) = x3 − 3x2. Find the critical values of f by solving
f ′(x) = 0. Determine if each critical value leads to a local maximum or local
minimum by computing the second derivative. State the local maxima/minima
of f . Sketch the function using the information you discovered.
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We now generalize the second derivative test to all dimensions. We’ve already
seen that the second derivative of a function such as z = f(x, y) is a square
matrix. The second derivative test relied on understanding if a function was
concave up or concave down. We need a way to examine the concavity of f as
we approach a point (x, y) from any of the infinitely many directions. Such a
method exists, and leads to an eigenvalue/eigenvector problem. I’m assuming
that most of you have never heard the word “eigenvalue.” We could spend an
entire semester just studying eigenvectors. We’d need a few weeks to discover
what they are from a problem-based approach. Instead, here is an example of
how to find eigenvalues and eigenvectors.

Definition 9.C. Let A be a square matrix, so in 2D we have A =

(
a b
c d

)
.

The identity matrix I is a square matrix with 1’s on the diagonal and zeros

everywhere else, so in 2D we have I =

(
1 0
0 1

)
. The eigenvalues of A are the

solutions λ to the equation |A− λI| = 0. Remember that |A| means, “Compute
the determinant of A.” So in 2D, we need to find the value λ so that∣∣∣∣(a b

c d

)
− λ

(
1 0
0 1

)∣∣∣∣ =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0.

This definition extends to any square matrix. In 3D, the eigenvalues are the
solutions to the equation∣∣∣∣∣∣

a b c
d e f
g h i

− λ
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a− λ b c
d e− λ f
g h i− λ

∣∣∣∣∣∣ = 0.

An eigenvector of A corresponding to λ is a nonzero vector ~x such that A~x = λx.

As you continue taking more upper level science courses (in physics, engi-
neering, mathematics, chemistry, and more) you’ll soon see that eigenvalues and
eigenvectors play a huge role. You’ll start to see them in most of your classes.
For now, we’ll use them without proof to apply the second derivative test. In
class, make sure you ask me to show you pictures with each problem we do, so
we can see how eigenvalues and eigenvectors appear in surfaces.

Theorem 9.D (The Second Derivative Test). Let f(x, y) be a function so that
all the second partial derivatives exist and are continuous. The second derivative
of f , written D2f and sometimes called the Hessian of f , is a square matrix.
Let λ1 be the largest eigenvalue of D2f , and λ2 be the smallest eigenvalue. Then
λ1 is the largest possible second derivative obtained in any direction. Similarly,
the smallest possible second derivative obtained in any direction is λ2. The
eigenvectors give the directions in which these extreme second derivatives are
obtained. The second derivative test states the following.

Suppose (a, b) is a critical point of f , meaning Df(a, b) =
[
0 0

]
.

• If all the eigenvalues of D2f(a, b) are positive, then in every
direction the function is concave upwards at (a, b) which means
the function has a local minimum at (a, b).

• If all the eigenvalues of D2f(a, b) are negative, then in every
direction the function is concave downwards at (a, b). This
means the function has a local maximum at (a, b).
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• If the smallest eigenvalue of D2f(a, b) is negative, and the
largest eigenvalue of D2f(a, b) is positive, then in one direction
the function is concave upwards, and in another the function is
concave downwards. The point (a, b) is called a saddle point.

• If the largest or smallest eigenvalue of f equals 0, then the
second derivative tests yields no information.

Example 9.E. Consider the function f(x, y) = x2 − 2x + xy + y2. The first
and second derivatives are

Df(x, y) =
[
2x− 2 + y, x+ 2y

]
and D2f =

[
2 1
1 2

]
.

The first derivative is zero (the zero matrix) when both 2x − 2 + y = 0 and
x+ 2y = 0. We need to solve the system of equations 2x+ y = 2 and x+ 2y = 0.
Double the second equation, and then subtract it from the first to obtain
0x − 3y = 2, or y = −2/3. The second equation says that x = −2y, or that
x = 4/3. So the only critical point is (4/3,−2/3).

We find the eigenvalues of D2f(4/3,−2/3) by solving the equation In this example, the second
derivative is constant, so the point
(4/3,−2/3) did not change the
matrix. In general, the point will
affect your matrix. See Sage to see
a graph which shows the
eigenvectors in which the largest
and smallest second derivatives
occur.

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣ = (2− λ)(2− λ)− 1 = 0.

Expanding the left hand side gives us 4 − 4λ + λ2 − 1 = 0. Simplifying
and factoring gives us λ2 − 4λ + 3 = (λ − 3)(λ − 1) = 0. This means the
eigenvalues are λ = 1 and λ = 3. Since both numbers are positive, the
function is concave upwards in every direction. The critical point (4/3,−2/3)
corresponds to a local minimum of the function. The local minimum is the
output f(4/3,−2/3) = (4/3)2 − 2(4/3) + (4/3)(−2/3) + (−2/3)2.

A graph of f is provided on the right. The red vector (1, 1) points in the
direction in which the second derivative is the largest value 3. The red vector
(−1, 1) points in the direction in which the second derivative is the smallest
value 1. These vectors are called eigenvectors, and you can learn much more
about them, in particular how to find them, in a linear algebra course. For this
course, we just need to be able to find eigenvalues.

Problem 9.14 Consider the function f(x, y) = x2 + 4xy + y2.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 9.15 Consider the function f(x, y) = x3 − 3x+ y2 − 4y.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points. [Hint: First compute
D2f . Since there are two critical points, evaluate the second derivative
at each point to obtain 2 different matrices. Then find the eigenvalues of
each matrix.]

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

https://sagecell.sagemath.org/?q=775b0c4a-fc2c-4d39-8c30-ac5256cfb68a
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Problem 9.16 Consider the function f(x, y) = x3 + 3xy + y3.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

You now have the tools needed to find optimal solutions to problems in any
dimension. Here’s a silly problem that demonstrates how we can use what we’ve
just learned.

Problem 9.17 For my daughter’s birthday, she has asked for a Barbie
princess cake. I purchased a metal pan that’s roughly in the shape of a paraboloid
z = f(x, y) = 9− x2 − y2 for z ≥ 0. To surprise her, I want to hide a present
inside the cake. The present is a bunch of small candy that can pretty much fill a
box of any size. I’d like to know how large (biggest volume) of a rectangular box
I can fit under the cake, so that when we start cutting the cake, she’ll find her
surprise present. The box will start at z = 0 and the corners of the box (located
at (x,±y) and (−x,±y)) will touch the surface of the cake z = 9− x2 − y2.

1. What is the function V (x, y) that we are trying to maximize?

2. If you find all the critical points of V , you’ll discover there are 9. However,
only one of these critical points makes sense in the context of this problem.
Find that critical point.

3. Use the second derivative test to prove that the critical point yields a
maximum volume.

4. What are the dimensions of the box? What’s the volume of the box?

The only thing left for me is to now determine how much candy I should buy to
fill the box. I’ll take care of that.

In this problem, we’ll derive the version of the second derivative test that is
found in most multivariate calculus texts. The test given below only works for
functions of the form f : R2 → R. The eigenvalue test you have been practicing
will work with a function of the form f : Rn → R, for any natural number n.

Problem 9.18: Optional Suppose that f(x, y) has a critical point at (a, b).

1. Find a general formula for the eigenvalues of D2f(a, b). Your answer will
be in terms of the second partials of f .

2. Let D = fxxfyy − f2xy.

• If D < 0, explain why f has a saddle point at (a, b).

• If D = 0, explain why the second derivative test fails.

• If D > 0, explain why f has either a maximum or minimum at (a, b).

• If D > 0, and fx(a, b) > 0, does f have a local max or local min at
(a, b). Explain.

3. The only critical point of f(x, y) = x2 + 3xy + 2y2 is at (0, 0). Does this
point correspond to a local maximum, local minimum, or saddle point?
Give the eigenvalues (which should come instantly out of part 1). Find D,
from part 2, to answer the question.
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9.3 Lagrange Multipliers

The last problem was an example of an optimization problem where we wish
to optimize a function (the volume of a box) subject to a constraint (the box
has to fit inside a cake). If you are economics student, this section may be the
key reason why you were asked to take multivariate calculus. In the business
world, we often want to optimize something (profit, revenue, cost, utility, etc.)
subject to some constraint (a limited budget, a demand curve, warehouse space,
employee hours, etc.). An aerospace engineer will build the best wing that can
withstand given forces. Everywhere in the engineering world, we often seek to
create the “best” thing possible, subject to some outside constraints. Lagrange
discovered an extremely useful method for answering this question, and today
we call it “Lagrange Multipliers.”

Rather than introduce Cobb-Douglass production functions (from economics)
or sheer-stress calculations (from engineering), we’ll work with simple examples
that illustrate the key points. Sometimes silly examples carry the message across
just as well.

Problem 9.19 Suppose an ant walks around the circle g(x, y) = x2 +y2 = 1.
As the ant walks around the circle, the temperature is f(x, y) = x2 + y+ 4. Our
goal is to find the maximum and minimum temperatures reached by the ant as
it walks around the circle. We want to optimize f(x, y) subject to the constraint
g(x, y) = 1.

1. Draw the circle g(x, y) = 1. Then, on the same set of axes, draw several
level curves of f . The level curves f = 3, 4, 5, 6 are a good start. Then
add more (maybe at each 1/4th). If you make a careful, accurate graph,
it will help a lot below.

2. Based solely on your graph, where does the minimum temperature occur?
What is the minimum temperature?

3. If the ant is at the point (0, 1), and it moves left, will the temperature rise
or fall? What if the ant moves right?

4. On your graph, place a dot(s) where you believe the ant reaches a maximum
temperature (it may occur at more than one spot). Explain why you believe
this is the spot where the maximum temperature occurs. What about the
level curves tells you that these spots should be a maximum.

5. Draw the gradient of f at the places where the minimum and maximum
temperatures occur. Also draw the gradient of g at these spots. How are
the gradients of f and g related at these spots?

Theorem 9.F (Lagrange Multipliers). Suppose f and g are continuously dif-
ferentiable functions. Suppose that we want to find the maximum and minimum
values of f subject to the constraint g(x, y) = c (where c is some constant). Then
if a maximum or minimum occurs, it must occur at a spot where the gradient
of f and the gradient of g point in the same, or opposite, directions. So the
gradient of g must be a multiple of the gradient of f . To find the maximum and
minimum values (if they exist), we just solve the system of equations that result
from

~∇f = λ~∇g, and g(x, y) = c

where λ is the proportionality constant. The maximum and minimum values
will be among the solutions of this system of equations.
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Problem 9.20 Suppose an ant walks around the circle x2 + y2 = 1. As the
ant walks around the circle, the temperature is T (x, y) = x2 + y + 4. Our goal
is to find the maximum and minimum temperatures T reached by the ant as it
walks around the circle.

1. What function f(x, y) do we wish to optimize? What is the constraint
g(x, y) = c?

2. Find the gradient of f and the gradient of g. Then solve the system of The most common error on this
problem is to divide both sides of
an equation by x, which could be
zero. If you do this, you’ll only get
2 ordered pairs.

equations that you get from the equations

~∇f = λ~∇g, x2 + y2 = 1.

You should obtain 4 ordered pairs (x, y).

3. At each ordered pair, find the temperature. What is the maximum
temperature obtained? What is the minimum temperature obtained.

Problem 9.21 Consider the curve xy2 = 54 (draw it). The distance from
each point on this curve to the origin is a function that must have a minimum
value. Find a point (a, b) on the curve that is closest to the origin.

[The distance to the origin is d(x, y) =
√
x2 + y2. This distance is minimized

when f(x, y) = x2 + y2 is minimized. So use f(x, y) = x2 + y2 as the function
you wish to minimize. What’s the constraint g(x, y) = c?]

Problem 9.22 Find the dimensions of the rectangular box with maximum
volume that can be inscribed inside the ellipsoid

x2

22
+
y2

32
+
z2

52
= 1.

[What is the function f you wish to optimize? What is the constraint g = c?
Try solving each equation for λ so you can eliminate it from the problem.]

Problem 9.23 Repeat problem 9.17, but this time use Lagrange multipliers.
Find the dimensions of the rectangular box of maximum volume that fits
underneath the surface z = f(x, y) = 9− x2 − y2 for z ≥ 0.

[Hint: Let f(x, y, z) = (2x)(2x)(z) and g(x, y, z) = z+x2+y2 = 9. You’ll get
a system of 4 equations with 4 unknowns (x, y, z, λ). Try solving each equation
for lambda. You know x, y, z can’t be zero or negative, so ignore those possible
cases.]



Chapter 10

Double Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup and compute a double integral. Show how to
interchange the bounds of integration.

2. For planar regions, find area, mass, centroids, center of mass, moments of
inertia, and radii of gyration.

3. Explain how to change coordinate systems in integration, in particular to
polar coordinates. Explain what the Jacobian is, and show how to use it.

4. Explain how to use Green’s theorem to compute flow along and flux across
a curve.

You’ll have a chance to teach your examples to your peers prior to the exam.

10.1 Double Integrals and Applications

Before we introduce integration, let’s practice using inequalities to describe
regions in the plane. In first semester calculus, we often use the inequalities
a ≤ x ≤ b and g(x) ≤ y ≤ f(x) to describe the region above g below f for x
between a and b. We trapped x between two constants, and y between two
functions. Sometimes we wrote c ≤ y ≤ d where g(y) ≤ x ≤ f(y) to describe
the region to the right of g and left of f for y between c and d. We need to
practice writing inequalities in this form, as these inequalities provide us the
bounds of integration for double integrals.

Problem 10.1 Consider the region R in the xy-plane that is below the line
y = x+ 2, above the line y = 2, and left of the line x = 5. We can describe this
region by saying for each x with 0 ≤ x ≤ 5, we want y to satisfy 2 ≤ y ≤ x+ 2.
In set builder notation, we would write

R = {(x, y) | 0 ≤ x ≤ 5, 2 ≤ y ≤ x+ 2}.

The symbols { and } are used to enclose sets, and the symbol | stands for “such
that”. We read the above line as “R equals the set of (x, y) such that zero is
less than x which is less than 5, and 2 is less than y which is less than x+ 2.”

108
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1. Describe the region R by saying for each y with c ≤ y ≤ d, we want x
to satisfy a(y) ≤ x ≤ b(y). In other words, find constants c and d, and
functions a(y) and b(y), so that for each y between c and d, the x values
must be between the functions a(y) and b(y).

2. Write your last answer in the set builder notation

R = {(x, y) | c ≤ y ≤ d, a(y) ≤ x ≤ b(y)}.

[Hint: If you’re struggling, then draw the 4 curves given by 0 = x, x = 5, 2 = y
and y = x + 2. Then shade either above, below, left, or right of the line (as
appropriate).]

Problem 10.2 For each region R below, draw the region and give a set of
inequalities of the form a ≤ x ≤ b, c(x) ≤ y ≤ d(x) or in the form c < y <
d, a(y) ≤ x ≤ b(y). In class, we’ll give whichever one you did not.

1. The region R is above the line x+ y = 1 and inside the circle x2 + y2 = 1.

2. The region R is below the line y = 8, above the curve y = x2, and to the
right of the y-axis.

3. The region R is bounded by 2x+ y = 3, y = x, and x = 0.

We’re now ready to discuss double integrals. Just as single integrals gave
us the area under a function over an interval, double integrals will give us the
volume under a function, above a region in the plane. We’ll introduce double
integrals by looking at cross sections of a solid. You did this in first semester
calculus, but you always used geometric shapes, for which we know the area, to
create the cross sections. Let’s start with a review of this idea, and then jump
into double integrals.

Review Consider the parabola z = 9 − x2 for 0 ≤ x ≤ 3. Revolve this
parabola half way around the z-axis, and compute the volume of the solid that
is inside the paraboloid and above the xy-plane. Do so by considering horizontal
semicircular cross sections. See 1.

Let’s now consider the exact same solid, but instead of cutting horizontally,
let’s cut the object vertically. The first problem has you cut the solid up using
slices that are parallel to the x-axis (so keeping y constant). The next has you
repeat the problem, but this time using vertical slices that are parallel to the
y-axis (so keeping x constant). The idea is exactly the same. Just find the area
of a slice, thicken it up (using dx or dy), and then integrate.

Problem 10.3 Consider the solid domain D in space that is beneath the
surface f(x, y) = 9− x2 − y2 and above the xy-plane, where the x values satisfy
x ≥ 0. The region is half of a parabolic solid. Our goal in this problem is to
find the volume of the solid D.

1 The area of each cross section is the area of a semicircle, which is A = 1
2
πr2 = 1

2
πx2 as

the radius is x. We thicken each cross section up by multiplying by dz, the height of each
circular disc. Since the height has a dz, we replace x with x =

√
9− z in the area formula

to get a little bit of volume as dV = 1
2
π(
√

9− z)2dz. The z values range from 0 to 9, which
means the volume of the solid is the integral

V =

∫ 9

0

1

2
π(
√

9− z)2dz =
π

2

∫ 9

0
9− zdz =

π

2

(
9z −

z2

2

) ∣∣∣∣9
0

=
81π

4
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1. Please click on this sage link. In this picture, you’ll see the solid D drawn.
You’ll also see several cross sections of the surface (half parabolas), each
one obtained by letting y equal a constant (y = −2,−1, 0, 1, 2).

2. When yi = 0, the half parabola has area
∫ 3

0
9− x2dx. When yi = 2, the

half parabola has area
∫ ?

0
5− x2dx. When y = yi, explain why the area of

each of the cross sections from the first part is

Ay=yi =

∫ √9−y2i

0

(9− x2 − y2i )dx.

3. In the first Sage picture above, we cut the solid into 6 pieces. We could
cut the solid into more pieces. Click on this Sage link to see what happens
if we cut the solid into 12 pieces, and then fatten up each cross section by
dy = 1/2 units, obtaining 12 tiny bits of volume dV .

Explain why the total volume of the solid D equals∫ 3

−3

(∫ √9−y2

0

(9− x2 − y2)dx

)
dy.

The integral above is called an iterated integral because you first compute
the inside integral and then you compute the outside integral (you iteratively
integrate). Often the parenthesis are not written because we know that the
inside integral should be performed first without writing the parenthesis. We
could also explicitly emphasize which variables go with each bound by writing∫ y=3

y=−3

(∫ x=
√

9−y2

x=0

9− x2 − y2dx

)
dy.

This latter approach is not commonly used, but can save a beginner from making
simple errors.

Problem 10.4 The bounds of the integral Click on this Sage link to see a
picture of how you could obtain
this answer by considering cross
sections.

∫ 3

−3

(∫ √9−y2

0

(9− x2 − y2)dx

)
dy

describe a region R in the plane, namely

−3 ≤ y ≤ 3 and 0 ≤ x ≤
√

9− y2.

Draw this region R in the xy-plane. Then give bounds to describe the region
alternately by first stating constants which trap x (so a ≤ x ≤ b) and then
functions which trap y (so c(x) ≤ y ≤ d(x)). Use these new bounds to write an
iterated integral ∫ x=b

x=a

(∫ y=d(x)

y=c(x)

9− x2 − y2dy

)
dx

that gives the exact same volume of the solid D from the previous problem.

In the two problems above, we computed the volume of solid by considering
cross sections of the solid. We could also cut the solid up in both the x

http://bmw.byuimath.com/dokuwiki/doku.php?id=cross_sections_of_solid_by_letting_y_equal_a_constant
http://bmw.byuimath.com/dokuwiki/doku.php?id=cross_sections_multiplied_by_dy
http://bmw.byuimath.com/dokuwiki/doku.php?id=cross_sections_of_solid_by_letting_x_equal_a_constant
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and y dimensions. This would result in tiny rectangles in the xy plane with
area dA = dxdy = dydx, and the solid would have height f(x, y) above these
rectangles. This means we would have a little bit of volume written as

dV = fdA = fdxdy = fdydx.

Adding up these little bits of volume gives us the double integral

V =

∫∫
R

fdA =

∫∫
R

fdydx =

∫∫
R

fdxdy.

We can either set up the bounds with x on the inside, or y on the inside. We’ll
get the same answer. When we set up the integral with bounds, we call it an
iterated integral, and write.∫ b

a

∫ d(x)

c(x)

f(x, y)dydx or

∫ d

c

∫ b(y)

a(y)

f(x, y)dxdxy.

Definition 10.A: Double and Iterated Integrals. A double integral is writ-

ten

∫∫
R

f(x, y)dA. We just have to state what the region R is to talk about

a double integral. The formal definition of a double integrals involves slicing
the region R up into tiny rectangles of area dxdy, multiplying each rectangle by
a height f , and then summing over all rectangles. This process is repeated as
the length and width of the rectangles shrinks to zero at similar rates, with the
double integral being the limit of this process.

An iterated integral is a double integral where we have actually set up the
bounds as either∫ b

a

∫ d(x)

c(x)

f(x, y)dydx or

∫ d

c

∫ b(y)

a(y)

f(x, y)dxdxy.

We’ll focus mostly on setting up iterated integrals in this course.

Problem 10.5 Consider the region R in the plane that is bounded by the
line y = x+ 2 and the parabola y = x2 − 4. Distances are measured in cm.

1. Draw the region R, and give bounds of the form a ≤ x ≤ b, c(x) ≤ y ≤ d(x)
to describe the region.

2. A metal plate occupies the region R. The metal plate was constructed to
have a density of δ(x, y) = (y + 4) g/cm2. Explain why the mass of the

plate is the double integral

∫∫
R

δdA.

3. Compute the double integral

∫∫
R

(y + 4)dA by setting up an iterated Check your work with this Double
Integral Checker written in Sage.

integral (use the bounds from part 1) and then performing each integral.
Start with the inside integral, and then compute the outside integral.

Check your work with the link in the margin. You can use this Sage link
to check any double integral. If you think you have the bounds right, use
this Sage link to draw the region your bounds describe. If it doesn’t the
draw the region you thought, then your bounds are off. Trial and error is a
powerful tool here. You’ve got to try, and fail, and then make adjustments.
This is the key to mastering double integrals.

http://bmw.byuimath.com/dokuwiki/doku.php?id=double_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=double_integral_calculator
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Problem 10.6 Consider the iterated integral

∫ 3

0

∫ 3

x

ey
2

dydx.

1. Write the bounds as two inequalities (0 ≤ x ≤ 3 and ? ≤ y ≤?). Then
draw and shade the region R described by these two inequalities.

2. Swap the order of integration from dydx to dxdy. This forces you to
describe the region using two inequalities of the form c ≤ y ≤ d and
a(y) ≤ x ≤ b(y). This is the key.

3. Use your new bounds to compute the integral by hand (you’ll need a
u-substitution u = y2 on the outer integral).

4. Now use Sage to check your work. Then also use Sage to compute the

original the original integral

∫ 3

0

∫ 3

x

ey
2

dydx, and tell us what the inner

integral equals (if you see i,
√
π, and erf, then you did this correctly).

Problem 10.7 Consider the region R in the plane that is trapped between
the curves x = 2y and x = y2. We would like to compute

∫∫
R

(−y)dA over this
region R. Set up both iterated integrals. Then compute one of them. Explain
why your answer is negative.

In the line integral chapter, we introduce the ideas of average value, centroid,
and center of mass. We now extend those ideas to regions in the plane, in exactly
the same way. For example, the average value formula in the line integral section

was f̄ =

∫
C
fdx∫
C
ds

. For double integrals, we just change ds to dA, and add an

integral. This gives the formula f̄ =

∫∫
R
fdA∫∫
R
dA

. The same substitution works on Average value formula

all the integrals from before. We now have dm = δdA instead of dm = δds, as
now density is a mass per area, instead of a mass per length. We obtained the
arc length of a curve C by computing s =

∫
C
ds, as we just add up little bits of

arc length. We can obtain the area of a region R by computing A =
∫∫
R
dA, as

we just add up little bits of area. The centroid of a region R in the plane is Centroid Formula(
x̄ =

∫∫
R
xdA∫∫

R
dA

, ȳ =

∫∫
R
ydA∫∫

R
dA

)
and the center of mass is Center of Mass Formula(

x̄ =

∫∫
R
xdm∫∫

R
dm

, ȳ =

∫∫
R
ydm∫∫

R
dm

)
, where dm = δdA.

Problem 10.8 Consider the rectangular region R in the xy-plane described
by {(x, y) | 2 ≤ x ≤ 11, 3 ≤ y ≤ 7}.

1. Set up an integral formula which would give ȳ for the centroid of R. Then
evaluate the integral.

2. State x̄ from geometric reasoning.

http://bmw.byuimath.com/dokuwiki/doku.php?id=double_integral_calculator
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Problem 10.9 Consider the region in the plane that is bounded by the
curves x = y2−3 and x = y−1. A metal plate occupies this region in space, and
its temperature function on the plate is give by the function T (x, y) = 2x+ y.
Find the average temperature of the metal plate.

Problem 10.10 Consider the region R that is the circular disc which is
inside the circle (x− 2)2 + (y + 1)2 = 9. The centroid is clearly (2,−1), and the
area is A = π(3)2 = 9π. We can use these fact to simplify many integrals that
require integrating over the region R.

1. Compute
∫∫
R

3dA = 3
∫∫
R
dA. [How can area help you?]

2. Explain why
∫∫
R
xdA = x̄A for any region R, and then compute

∫∫
R
xdA

for the circular disc. [You don’t need to set up any integrals at all.]

3. Compute the integral
∫∫
R

5x+ 2ydA by using centroid and area facts.

Problem 10.11 Consider the region R in the xy-plane that is formed from
two rectangular regions. The first region R1 satisfies x ∈ [−2, 2] and y ∈ [0, 7].
The second region R2 satisfies x ∈ [−5, 5] and y ∈ [7, 10]. Find the centroids of
R1, R2 and then finally R.

Problem 10.12 Let R be the region in the plane with a ≤ x ≤ b and
g(x) ≤ y ≤ f(x). Let A be the area of R. When you use double integrals to

find centroids, the formulas for the
centroid are the same for both x̄
and ȳ. In other courses, you may
see the formulas on the left,
because the ideas will be
presented without requiring
knowledge of double integrals.
Integrating the inside integral
from the double integral formula
gives the single variable formulas.

1. Set up an iterated integral to compute the area of R. Then compute the
inside integral. You should obtain a familiar formula from first-semester
calculus.

2. Set up an iterated integral formula to compute x̄ for the centroid. By

computing the inside integral, show why x̄ =
1

A

∫ b

a

x(f − g)dx.

3. If the density depends only on x, so δ = δ(x), set up an iterated integral
formula to compute ȳ for the center of mass. Explain why

ȳ =
1

mmahtmath

∫ b

a

1

2
(f2 − g2)δ(x)dx.

10.2 Switching Coordinates: The Jacobian

We now want to explore how to perform u-substitution in high dimensions. Let’s
start with a review from first semester calculus.

Problem 10.13 Consider the integral

∫ 4

−1
e−3xdx.

1. Let u = −3x. Solve for x and then compute dx.

2. Explain why

∫ 4

−1
e−3xdx =

∫ −12
3

eu
(
−1

3

)
du.
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3. Explain why

∫ 4

−1
e−3xdx =

∫ 3

−12
eu
∣∣∣∣−1

3

∣∣∣∣ du.

4. If the u-values are between −3 and 2, what would the x-values be between?
How does the length of the u interval [−3, 2] relate to the length of the
corresponding x interval?

In the problem above, we used a change of coordinates u = −3x, or x =
−1/3u. By taking derivatives, we found that dx = − 1

3du. The negative means
that the orientation of the interval was reversed. The fraction 1

3 tells us that
lengths dx using x coordinates will be 1/3rd as long as lengths du using u
coordinates. When we write dx = dx

dudu, the number dx
du is called the Jacobian

of x with respect to u. The Jacobian tells us how lengths are altered when we
change coordinate systems. We now generalize this to polar coordinates. Before
we’re done with this section, we’ll generalize the Jacobian to any change of
coordinates.

Problem 10.14 Consider the polar change of coordinates x = r cos θ and
y = r sin θ, which we could just write as

~T (r, θ) = (r cos θ, r sin θ).

1. Compute the derivative D~T (r, θ). You should have a 2 by 2 matrix.

2. We need a single number from this matrix that tells us something about
area. Determinants are connected to area. Compute the determinant of
D~T (r, θ) and simplify.

The determinant you found above is called the Jacobian of the polar coordi-
nate transformation. Let’s summarize these results in a theorem.

Theorem 10.B. If we use the polar coordinate transformation x = r cos θ, y = Ask me in class to give you an
informal picture approach that
explains why dxdy = rdrdθ.

r sin θ, then we can switch from (x, y) coordinates to (r, θ) coordinates if we use

dxdy = |r|drdθ.

The number |r| is called the Jacobian of x and y with respect to r and θ. If we
require all bounds for r to be nonnegative, we can ignore the absolute value. If
Rxy is a region in the xy plane that corresponds to the region Rrθ in the rθ
plane (where r ≥ 0), then we can write∫∫

Rxy

f(x, y)dxdy =

∫∫
Rrθ

f(r cos θ, r sin θ)r drdθ.

We need some practice using this idea. We’ll start by describing regions
using inequalities on r and θ.

Problem 10.15 For each region R below, draw the region in the xy-plane.
Then give a set of inequalities of the form a ≤ r ≤ b, α(r) ≤ θ ≤ β(r) or
α < θ < β, a(θ) ≤ r ≤ b(θ). For example, if the region is the inside of the circle
x2 + y2 = 9, then we could write 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3.

1. The region R is the quarter circle in the first quadrant inside the circle
x2 + y2 = 25.

2. The region R is below y =
√

9− x2, above y = x, and to the right of
x = 0.
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3. The region R is the triangular region below y =
√

3x, above the x-axis,
and to the left of x = 1.

Problem 10.16 Consider the opening problem for this unit. We want to See Sage.

find the volume under f(x, y) = 9−x2−y2 where x ≥ 0 and z ≥ 0. We obtained
the integral formula∫∫

R

fdA =

∫ y=3

y=−3

∫ x=
√

9−y2

x=0

9− x2 − y2dxdy.

1. Write bounds for the region R by giving bounds for r and θ.

2. Rewrite the double integral as an iterated integral with bounds for r and
θ. Don’t forget the Jacobian (as dxdy = rdrdθ).

3. Compute the integral in the previous part by hand. [Suggestion: you’ll
want to simplify 9− x2 − y2 to 9− r2 before integrating.]

Problem 10.17 Find the centroid of a semicircular disc of radius a (y ≥ 0).
Actually compute any integrals.

Problem 10.18 Compute the integral

∫ 1

0

∫ √1−x2

−
√
1−x2

2

(1 + x2 + y2)2
dydx. [Hint:

try switching coordinate systems to polar coordinates. This will require you to
first draw the region of integration, and then then obtain bounds for the region
in polar coordinates.]

We’re now ready to define the Jacobian of any transformation.

Definition 10.C. Suppose ~T (u, v) = (x(u, v), y(u, v)) is a differentiable coordi-
nate transformation. To find the Jacobian of this transformation, we first find
the derivative of ~T . This is a square matrix, so it has a determinant, which
should give us information about area. As the determinant may be positive
or negative, we then take the absolute value to obtain the Jacobian. So the
Jacobian of the transformation ~T is the absolute value of the determinant of
the derivative. Notationally we write For a tongue twister, say “the

absolute value of the determinant
of the derivative” ten times really
fast.J(u, v) =

∂(x, y)

∂(u, v)
= |det(D~T (u, v))|.

Problem 10.19 Consider the transformation u = x+ 2y and v = 2x− y.

1. Solve for x and y in terms of u and v. Then compute the Jacobian ∂(x,y)
∂(u,v) .

2. We were give u and v in terms of x and y, so we could have directly

computed ∂(u,v)
∂(x,y) . Do so now.

3. Make a conjecture about the relationship between ∂(x,y)
∂(u,v) and ∂(u,v)

∂(x,y) .

https://sagecell.sagemath.org/?q=60eb3051-6680-4031-afba-893277d1ec90
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Theorem 10.D. Suppose that f is integrable over a region Rxy in the xy plane.

Suppose that ~T (u, v) = (x(u, v), y(u, v)) is a coordinate transformation that has

the Jacobian
∂(x, y)

∂(u, v)
. Suppose the region Ruv in the uv-plane corresponds to the

region Rxy in the xy-plane. Provided the Jacobian is nonzero except possibly on
regions with zero area, we can then write∫∫

Rxy

f(x, y)dxdy =

∫∫
Ruv

f(x(u, v), y(u, v))
∂(x, y)

∂(u, v)
dudv.

We can remember this in differential form as

dxdy =
∂(x, y)

∂(u, v)
dudv.

Let’s use this to rapidly find the area inside of an ellipse.

Problem 10.20 Consider the region R inside the ellipse
(x
a

)2
+
(y
b

)2
= 1.

We’ll consider the change of coordinates given by u = (x/a) and v = (y/b).

1. Draw the region R in the xy-plane. After substituting u = x/a and
v = y/b, draw the region Ruv in the uv-plane. You should have a circle.
What is the area inside this circle in the uv-plane?

2. Solve for x and y, and then compute the Jacobian
∂(x, y)

∂(u, v)
. Show how to

get the same result from directly computing
∂(u, v)

∂(x, y)
.

3. We know the area in the xy-plane of the ellipse is
∫∫
Rxy

dxdy. Use the

previous theorem to switch to an integral over the region Ruv. Then
evaluate this integral by using facts about area so prove that the area in
the xy plane is πab. [Hint: you don’t actually have to set up any bounds,
rather just reduce this to an area integral over the region Ruv.]

Problem 10.21 Let R be the region in the plane bounded by the curves
x + 2y = 1, x + 2y = 4, 2x − y = 0, and 2x − y = 8. We want to compute
the integral

∫∫
R
xdxdy. Draw the region R in the xy-plane. Use the change of

coordinates u = x+ 2y and v = 2x− y to evaluate this integral. Make sure you
provide a sketch of the region Ruv in the uv-plane (it should be a rectangle).
[Hints: what are the bounds for u and v? You’ll want to solve for x and y in
terms of u and v, and then you’ll need a Jacobian.]

Problem 10.22 Use the transformation u = 3x + 2y and v = x + 4y to
evaluate the integral∫∫

R

(3x2 + 14xy + 8y2)dxdy =

∫∫
R

(3x+ 2y)(x+ 4y)dxdy

for the region R that is bounded by the lines y = −(3/2)x+ 1, y = −(3/2)x+ 3,
y = −(1/4)x, and y = (−1/4)x+ 1.
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10.3 Green’s Theorem

Now that we have double integrals, it’s time to make some of our circulation
and flux problems from the line integral section get extremely simple. We’ll
start by defining the circulation density and flux density for a vector field
~F (x, y) = 〈M,N〉 in the plane.

Definition 10.E: Circulation Density and Flux Density (Divergence).

Let ~F (x, y) = 〈M,N〉 be a continuously differentiable vector field. At the point
(x, y) in the plane, create a circle Ca of radius a centered at (x, y), where the

area inside of Ca is Aa = πa2. The quotient
1

Aa

∮
Ca

~F · ~Tds is a circulation per

area. The quotient
1

Aa

∮
Ca

~F · ~nds is a flux per area.

• The circulation density of ~F at (x, y) we define to be We will not prove that the partial
derivative expressions Nx −My

and Mx +Ny are actually equal
to the limits given here. That is
best left to an advanced course.

∂N

∂x
− ∂M

∂y
= Nx −My = lim

a→0

1

Aa

∮
Ca

~F · d~r = lim
a→0

1

Aa

∮
Ca

Mdx+Ndy.

• The divergence, or flux density, of ~F at (x, y) we define to be

∂M

∂x
+
∂N

∂y
= Mx +Ny = lim

a→0

1

Aa

∮
Ca

~F · ~nds = lim
a→0

1

Aa

∮
Ca

Mdy −Ndx.

In the definitions above, we could have replaced the circle Ca with a square
of side lengths a centered at (x, y) with interior area Aa. Alternately, we could
have chosen any collection of curves Ca which “shrink nicely” to (x, y) and have
area Aa inside. Regardless of which curves you chose, it can be shown that

Nx −My = lim
a→0

1

Aa

∮
Ca

~F · ~Tds and Mx +Ny = lim
a→0

1

Aa

∮
Ca

~F · ~nds.

To understand what the circulation and flux density mean in a physical
sense, think of ~F as the velocity field of some gas.

• The circulation density tells us the rate at which the vector field ~F
causes objects to rotate around points. If circulation density is positive,
then particles near (x, y) would tend to circulate around the point in a
counterclockwise direction. The larger the circulation density, the faster
the rotation. The velocity field of a gas could have some regions where
the gas is swirling clockwise, and some regions where the gas is swirling
counterclockwise.

• The divergence, or flux density, tells us the rate at which the vector field
causes object to either flee from (x, y) or come towards (x, y). For the
velocity field of a gas, the gas is expanding at points where the divergence
is positive, and contracting at points where the divergence is negative.

We are now ready to state Green’s Theorem. Ask me in class to give an
informal proof as to why this theorem is valid.

Theorem 10.F (Green’s Theorem). Let ~F (x, y) = (M,N) be a continuously
differentiable vector field, which is defined on an open region in the plane that
contains a simple closed curve C and the region R inside the curve C. Then
we can compute the counterclockwise circulation of ~F along C, and the outward
flux of ~F across C by using the double integrals∮

C

~F · ~Tds =

∫∫
R

Nx −MydA and

∮
C

~F · ~nds =

∫∫
R

Mx +NydA.
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Let’s now use this theorem to rapidly find circulation (work) and flux.

Problem 10.23 Consider the vector field ~F = (2x + 3y, 4x + 5y). Start See 16.4 for more practice. Try
doing a bunch of these, as they
get really fast.

by computing Nx −My and Mx + Ny. If C is the boundary of the rectangle

2 ≤ x ≤ 7 and 0 ≤ y ≤ 3, find both the circulation and flux of ~F along C. You
should be able to reduce the integrals to facts about area. [If you tried doing
this without Green’s theorem, you would have to parametrize 4 line segments,
compute 4 integrals, and then sum the results.]

Problem 10.24 Consider the vector field ~F = (x2 + y2, 3x+ 5y). Start by
computing Nx −My and Mx + Ny. If C is the circle (x − 3)2 + (y + 1)2 = 4

(oriented counterclockwise), then find both the circulation and flux of ~F along C.
You should be able to reduce the integrals to facts about the area and centroid.

Problem 10.25 Repeat the previous problem, but change the curve C to
the boundary of the triangular region R with vertexes at (0, 0), (3, 0), and (3, 6).
You can complete this problem without having to set up the bounds on any
integrals, if you reduce the integrals to facts about area and centroids. You are
welcome to look up the centroid of a triangular region without computing it.



Chapter 11

Surface Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup surface integrals, and use them to compute surface
area, average value, centroids, center of mass, moments of inertia, and
radii of gyration.

2. Use surface integrals to compute flux across a surface, in a given direction.

3. Explain how to use Stokes’s theorem to compute circulation.

You’ll have a chance to teach your examples to your peers prior to the exam.

11.1 Surface Area and Surface Integrals

In first-semester calculus, we learned how to compute integrals
∫ b
a
fdx along

straight (flat) segments [a, b]. This semester, in the line integral unit, we learned
how to change the segment to a curve, which allowed us to compute integrals∫
C
fds along any curve C, instead of just along curves (segments) on the x-axis.

The integral
∫ b
a
dx = b− a gives the length of the segment [a, b]. The integral∫

C
ds gives the length s of the curve C.
In the double integral unit we learned how to compute double integrals∫∫
R
fdA along flat regions R in the plane. We’ll now learn how to change the

flat region R into a curved surface S, and then compute integrals of the form∫∫
S
fdσ along curved surfaces. The differential dσ stands for a little bit of

surface area. We already know that
∫∫
R
dA gives the area of R. We’ll define∫∫

S
dσ so that it gives the surface area of S.

Problem 11.1 Consider the surface S given by z = 9− x2 − y2 (we’ve seen
this surface many times). A parametrization of this surface is

~r(x, y) = (x, y, 9− x2 − y2).

1. Draw the surface S. Add to your surface plot the parabolas given by Instructor: See Sage.

~r(x, 0), ~r(x, 1), and ~r(x, 2), as well as the parabolas given by ~r(0, y), ~r(1, y),
and ~r(2, y). You should have an upside down paraboloid, with at least 6
different parabolas drawn on the surface. These parabolas should divide
the surface up into a bunch of different patches. Our goal is to find the
area of each patch, where each patch is almost like a parallelogram.
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2. Find
∂~r

∂x
and

∂~r

∂y
. At the point (2, 1), draw both vectors. These vectors

form the edges of a parallelogram. Add that parallelogram to your picture.

3. Show that the area of a parallelogram whose edges are the vectors
∂~r

∂x
(x, y)

and
∂~r

∂y
is
√

1 + 4x2 + 4y2. [Hint: think about the cross product.]

4. Find the area of the parallelogram whose edges are the vectors
∂~r

∂x
dx and

∂~r

∂y
dy, where dx and dy are to be determined.

In the previous problem, you showed that the area of the parallelogram with
edges given by ∂~r

∂xdx and ∂~r
∂ydy is

dσ =

∣∣∣∣ ∂~r∂x × ∂~r

∂y

∣∣∣∣ dxdy.
This little bit of area approximates the area of a tiny patch on the surface. If
we add all these areas up, we should obtain the surface area.

Definition 11.A. Let S be a surface. Let ~r(u, v) = (x, y, z) be a parametriza-
tion of the surface, where the bounds on u and v form a region R in the uv
plane. Then the surface area element (representing a little bit of surface) is

dσ =

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv = |~ru × ~rv| dudv.

The surface integral of a continuous function f(x, y, z) along the surface S is∫∫
S

f(x, y, z)dσ =

∫∫
R

f(~r(u, v))

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv.
If we let f = 1, then the surface area of S is simply

σ =

∫∫
S

dσ =

∫∫
R

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv.
This definition tells us how to compute any surface integral. The steps are

almost identical to the line integral steps.

1. Start by getting a parametrization ~r of the surface S where the bounds
form a region R.

2. Find a little bit of surface area by computing dσ =
∣∣ ∂~r
∂u ×

∂~r
∂v

∣∣ dudv.
3. Multiply f by dσ, and replace each x, y, z with what they equals from

the parametrization.

4. Integrate the previous function along R, your parameterization’s bounds.

Problem 11.2 Consider the surface S given by z = 9− x2 − y2, for z ≥ 0.
A parametrization of this surface is

~r(x, y) = (x, y, 9− x2 − y2), where 9− x2 − y2 ≥ 0.

1. Give a set of inequalities for x and y that describe the region R over which
we need to integrate. The inequalities you give should be in a form that
you can use them as the bounds of a double integral.
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2. Find dσ = |~rx × ~ry| dxdy.

3. Set up the surface integral
∫∫
S
dσ as an iterated double integral over R.

4. Convert the integral above to an integral in polar coordinates (don’t forget
the Jacobian).

Problem 11.3 Consider the surface S given by z = 9− x2 − y2, for z ≥ 0.
A different parametrization of this surface is

~r(r, θ) = (r cos θ, r sin θ, 9− r2), where 9− r2 ≥ 0.

1. Give a set of inequalities for r and θ that describe the region Rrθ over
which we need to integrate. The inequalities you give should be in a form
that you can use them as the bounds of a double integral.

2. Find dσ = |~rr × ~rθ| drdθ.

3. Set up the surface integral
∫∫
S
dσ as an iterated double integral over Rrθ.

Problem 11.4 Find, actually compute, the surface area of the surface S
given by z = 9− x2 − y2, for z ≥ 0. Do this by computing any of the integrals
from the previous two problems.

Problem 11.5 If a surface S is parametrized by ~r(x, y) = (x, y, f(x, y)),

show that dσ =
√

1 + f2x + f2y dxdy (compute a cross product). If ~r(x, z) =

(x, f(x, z), z), what does dσ equal (compute a cross product - you should see
a pattern)? Use the pattern you’ve discovered to quickly compute dσ for the
surface x = 4− y2 − z2, and then set up an iterated double integral that would
give the surface area of S for x ≥ 0.

Problem 11.6 Consider the sphere x2 + y2 + z2 = a2. We’ll find dσ using
two different parameterizations.

1. If you use the rectangular parametrization ~r(x, y) = (x, y,
√
a2 − x2 − y2),

what is dσ? [Hint, use the previous problem.] Why can this parametriza-
tion only be use if the surface has positive z-values?

2. If you use the spherical parametrization You’ll want to memorize this
result.

~r(φ, θ) = (a sinφ cos θ, a sinφ sin θ, a cosφ),

show that
dσ = (a2| sinφ|)dφdθ = (a2 sinφ)dφdθ,

where we can ignore the absolute values if we require 0 ≤ φ ≤ π. Along
the way, you’ll show that

~rφ × ~rθ = a2 sinφ(sinφ cos θ, sinφ sin θ, cosφ).

We can compute average value, centroids, center of mass, moments of inertia,
and radii of gyration as before. We just replace dA with dσ, and all the formulas
are the same.
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Problem 11.7 Consider the hemisphere x2 + y2 + z2 = a2 for z ≥ 0.

1. Set up a formula that would give z̄ for the centroid of the hemisphere. I
suggest you use a spherical parametrization, as then the bounds are fairly
simple, and we know dσ = (a2 sinφ)dφdθ from the previous problem.

2. Compute the two integrals in your formula.

3. Set up an integral formula for Rz, the radius of gyration about the z axis,
provided the density is constant.

11.1.1 Flux across a surface

We now want to look at the flux of a vector field across a surface S. In the line
integral section, we defined the outward flux of a vector field F across a curve

C to be the line integral

∫
C

~F · ~nds, where ~n is a normal vector point out of

region enclosed by a curve C. When we want to find the flux of a vector field
across a surface, we must state in which direction we want to compute the flux.
We then must make sure that normal vector ~n we choose to use actually points
in the desired direction. The flux of a vector field ~F across a surface S is the
surface integral

Flux = Φ =

∫∫
S

~F · ~ndσ.

The next problem will help us simplify the computation of ~ndσ.

Problem 11.8 Consider again the surface z = 9− x2 − y2.

1. Using the parametrization ~r(x, y) = (x, y, 9− x2 − y2), find a unit normal
vector ~n to the surface so that ~n points upwards away from the z-axis.
State what dσ equals, as well as ~ndσ. Make sure you explain how you
know the normal vector you give is pointing upwards away from the z
axis.

2. Using the parametrization ~r(r, θ) = (r cos θ, r sin θ, 9 − r2), find a unit
normal vector ~n to the surface so that ~n points downwards towards the
z-axis. State what dσ equals, as well as ~ndσ. Make sure you explain how
you know the normal vector you give is pointing downwards towards the z
axis.

[For both parts above, the computations involved were actually done in previous
problems. You just need to compile the information here.]

In the problem above, we showed that ~ndσ = ±(~rx × ~ry)dxdy and that
~ndσ = ±(~rr × ~rθ)drdθ. We no longer need to find the magnitude of the cross
product, but we must determine the correct sign to put on our cross product.
This shows us that we can write flux as

Flux = Φ =

∫∫
S

~F · ~ndσ =

∫∫
Ruv

~F · (±~ru × ~rv)dudv.

Problem 11.9 Consider the cone z2 = x2 + y2 and vector field ~F = (2x+

3y, x−2y, yz). Set up an iterated integral that would give the flux of ~F outwards
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(away from the z-axis) for the portion of the cone between z = 1 and z = 3.
[Hint: Start by parameterizing the cone by using a polar parametrization

x = r cos θ, y = r sin θ, z =?.

You should obtain bounds for r and θ that are constants. Compute the normal
vector and look at the third component to determine if it points up or down.
Then just plug everything into the formula.]

When the surface is flat, often you can determine the normal vector without
having to perform any cross products. We’ll now compute a flux of a vector
field outwards across the 6 faces of a cube.

Problem 11.10 Find the flux of ~F = (x+y, y, z) outward across the surface
of the cube in the first quadrant bounded by x = 2, y = 3, z = 5. The cube has
6 surfaces, so we have to compute the flux across all 6 surfaces. Fill in the table
below to complete the flux across each surface, and then compute each integral
to find the total flux.

Surface ~r(u, v) ~n ~F (~r(u, v)) ~F · ~n Flux

Back x = 0 〈0, y, z〉 〈−1, 0, 0〉 ~F (0, y, z) = 〈y, y, z〉 −y
∫∫

Back
−ydσ = −ȳσ = −( 3

2 )(15)

Front x = 2 〈2, y, z〉 ~F (2, y, z) = 〈2 + y, y, z〉

Left y = 0 0 (Why?)

Right y = 3 〈x, 3, z〉 〈0, 1, 0〉 ~F (x, 3, z) = 〈x+ 3, 3, z〉 3 30 (Why?)

Bottom z = 0

Top z = 3

You should be able to complete each integral by considering centroids and surface
area of each of the 6 different flat surfaces. Show that the total flux is 90.

In the double integral chapter, we learned a way to greatly simplify flux
computations when working with simple closed curves. Green’s theorem stated
that

∫
C
~F · ~n ds =

∫∫
R
Mx + NydA. The divergence of ~F is the quantity

div(~F ) = Mx + Ny. This generalizes to higher dimensions, and is called the
divergence theorem. The next problem illustrates how. We’ll study this more in
the triple integral unit.

Problem 11.11 Consider the exact same vector field and box as the previous

problem. So we have the vector field ~F = (x+ y, y, z) and S is the surface of
the cube in the first quadrant bounded by x = 2, y = 3, z = 5.

1. Compute the divergence of ~F , which is div(~F ) = Mx +Ny + Pz.

2. The divergence theorem states that if S is a closed surface (has an inside
and an outside), and the inside of the surface is the solid domain D, then

the flux of ~F outward across S equals the triple integral∫∫
S

~F · ~n dσ =

∫∫ ∫
D

div(~F )dV.

Use the divergence theorem to compute the flux of ~F across S. [Hint:
Just as the area is found by adding up little bits of area, which is what
we mean by A =

∫∫
R
dA, the volume is found by adding up little bits of

volume.]
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Problem 11.12 In problem 11.6, we found

~ndσ = ~rφ × ~rθdφdθ = a2 sinφ(sinφ cos θ, sinφ sin θ, cosφ)dφdθ

for a sphere of radius a. Use this to compute the outward flux of

~F =
〈−x,−y,−z〉

(x2 + y2 + z2)3/2

across a sphere of radius a. You should get a negative number since the vector
field has all arrows pointing in. [Hint: Remember that for a sphere of radius

a we have a2 = x2 + y2 + z2. When you perform the dot product of ~F and
~n, you’ll save yourself a lot of time if you remember that ~u · ~u = |~u|2; the dot
product of a vector with itself is the length squared.]

Problem 11.13 Repeat the previous problem, but this time don’t use the
formula from problem 11.6. In fact, you don’t even need to parametrize the
surface. Instead, if you are at the point (x, y, z) on a sphere of radius a, give
a formula for the outward pointing unit normal vector ~n. Give this formula
by only using a geometric argument. Then find the outward flux of ~F =
〈−x,−y,−z〉

(x2 + y2 + z2)3/2
across a sphere of radius a. You should find that ~F · ~n

simplifies to a constant, so that you never actually have to compute dσ. Then
you can use known facts about the surface area of a sphere.
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Triple Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup and compute triple integrals, as well as how to
interchange the bounds of integration. Use these ideas to find area and
volume.

2. Explain how to change coordinate systems in integration, with an emphasis
on cylindrical, and spherical coordinates. Explain what the Jacobian of a
transformation is, and how to use it.

3. Use triple integrals to find physical quantities such as center of mass, radii
of gyration, etc. for solid regions.

4. Explain how to use the Divergence theorem to compute the flux of a vector
fields out of a closed surface.

You’ll have a chance to teach your examples to your peers prior to the exam.

12.1 Triple Integral Definition and Applications

Problem 12.1 Consider the iterated integral

∫ 3

−3

∫ √9−y2

0

∫ 9−x2−y2

0

dzdxdy.

This is an integral of the form
∫∫∫

D
dV , which means along some solid region D

in the plane, we are adding up little bits of volume. This integral should give the
volume of some solid region in space. Sketch the region D in space. Compute
the inside integral, and compare this to the first problem in the double integral
unit. Then evaluate the remaining integrals (though you might want to change
coordinate systems before doing so).

When working with double integrals, there were two different ways to set up
the bounds for our integrals, as dA = dxdy = dydx. When working with triple
integrals, there are six different ways to set up the bounds for our integrals, as

dV = dxdydz = dxdzdy = dydxdz = dydzdx = dzdxdy = dzdydx.

125
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Problem 12.2 Consider again the iterated integral∫ 3

−3

∫ √9−y2

0

∫ 9−x2−y2

0

dzdxdy.

There are 5 other iterated integrals that are equal to this integral, by switching

the order of the bounds. One of the integrals is
∫ 9

0

∫√9−z
0

∫√9−x2−z
−
√
9−x2−z dydxdz.

Set up the equivalent integrals using the bound dydzdx and dxdzdy. We’ll look
at the remaining 2 in class (though you’re welcome to finish them and present
them with your work).

Problem 12.3 Consider the iterated integral∫ 1

−1

∫ 1−x2

0

∫ y

0

dzdydx.

The bounds for this integral describe a region in space which satisfies the 3
inequalities −1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2, and 0 ≤ z ≤ y.

1. Draw the solid domain D in space described by the bounds of the iterated
integral.

2. There are 5 other iterated integrals equivalent to this one. Set up the
integrals that use the bounds dydxdz and dxdzdy. We’ll create the other
3 in class (though you are welcome to include them as part of your
presentation).

Problem 12.4 In each problem below, you’ll be given enough information
to determine a solid domain D in space. Draw the solid D and then set up an
iterated integral (pick any order you want) that would give the volume of D.
You don’t need to evaluate the integral, rather you just need to set them up.

1. The region D under the surface z = y2, above the xy-plane, and bounded
by the planes y = −1, y = 1, x = 0, and x = 4.

2. The region D in the first octant that is bounded by the coordinate planes,
the plane y + z = 2, and the surface x = 4− y2.

3. The pyramid D in the first octant that is below the planes
x

3
+
z

2
= 1 and

y

5
+
z

2
= 1. [Hint, don’t let z be the inside bound.]

4. The region D that is inside both right circular cylinders x2 + z2 = 1 and
y2 + z2 = 1.

We can find average value, centroids, centers of mass, moments of inertia,
and radii of gyration exactly as before, We just now need to integrate using
three integrals, and replace ds, dA or dσ, with dV .

Problem 12.5 Consider the triangular wedge D that is in the first octant,

bounded by the planes
y

7
+
z

5
= 1 and x = 12. In the yz plane, the wedge forms

a triangle that passes through the points (0, 0, 0), (0, 7, 0), and (0, 0, 5). Set up
integral formulas that would give the centroid (x̄, ȳ, z̄) of D. Actually compute
the integrals for ȳ. Then state x̄ and z̄ by using symmetry arguments.
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Problem 12.6 Consider the tetrahedron D in the first octant that is under-
neath the plane that intersects the coordinate axes in the three point (a, 0, 0),
(0, b, 0) and (0, 0, c), where you can assume that a, b, c > 0.

1. An equation of an ellipse that passes through (a, 0) and (0, b) is
x2

a2
+
y2

b2
= 1.

An equation of a line through these same two points is
x

a
+
y

b
= 1. An

equation of an ellipsoid through the three points (a, 0, 0), (0, b, 0), and

(0, 0, c) is
x2

a2
+
y2

b2
+
z2

c2
= 1. Guess an equation of the plane through these

same three points, and then verify that your guess is correct by plugging
the 3 points into your equation. This will provide you with an extremely
fast way to get an equation of a plane.

2. Set up an iterated integral that would give the volume of D.

3. If the density is δ(x, y, z) = 3x+ 2yz, set up iterated integrals that would
give the mass m.

12.2 Changing Coordinate Systems: The Jaco-
bian

Just as we did with polar coordinates in two dimensions, we can compute a
Jacobian for any change of coordinates in three dimensions. We will focus on
cylindrical and spherical coordinate systems. Remember that the Jacobian of
a transformation is found by first taking the derivative of the transformation,
then finding the determinant, and finally computing the absolute value.

Problem 12.7 The cylindrical change of coordinates is

x = r cos θ, y = r sin θ, z = z, or in vector form ~C(r, θ, z) = (r cos θ, r sin θ, z).

The spherical change of coordinates is

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ, or in vector form

~S(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

1. Verify that the Jacobian of the cylindrical transformation is
∂(x, y, z)

∂(r, θ, z)
= |r|.

If you want to make sure you don’t have to use absolute values, what must
you require?

2. The Jacobian of the spherical transformation is
∂(x, y, z)

∂(ρ, φ, θ)
= |ρ2 sinφ|. If

you want to make sure you don’t have to use absolute values, what must
you require?

The previous problem shows us that we can write

dV = dxdydz = rdrdθdz = ρ2 sinφdρdφdθ,

provided we require r ≥ 0 and 0 ≤ φ ≤ π. Cylindrical coordinates are ex-
tremely useful for problems which involve cylinders, paraboloids, and cones.
Problems which involve cones and spheres often have simple integrals in spherical
coordinates.
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Problem 12.8 The double cone z2 = x2 + y2 has two halves. Each half is See Sage.

called a nappe. Set up an integral in the coordinate system of your choice that
would give the volume of the region that is between the xy plane and the upper
nappe of the double cone z2 = x2 + y2, and between the cylinders x2 + y2 = 4
and x2 + y2 = 16. Then evaluate the integral.

Problem 12.9 Set up an integral in the coordinate system of your choice that
would give the volume of the solid ball that is inside the sphere a2 = x2 +y2 +z2.
Compute the integral to give a formula for the volume of a sphere of radius a.

Problem 12.10 Find the volume of the solid domain D in space which is See Sage.

above the cone z =
√
x2 + y2 and below the paraboloid z = 6− x2 − y2. Use

cylindrical coordinates to set up and then evaluate your integral. You’ll need to
find where the surface intersect, as their intersection will help you determine
the appropriate bounds.

Problem 12.11 Consider the region D in space that is inside both the
sphere x2 + y2 + z2 = 9 and the cylinder x2 + y2 = 4. Start by drawing the
region.

1. Set up an iterated integral in Cartesian (rectangular) coordinates that
would give the volume of D.

2. Set up an iterated integral in cylindrical coordinates that would give the
volume of D.

Problem 12.12 Consider the region D in space that is both inside the
sphere x2 + y2 + z2 = 9 and yet outside the cylinder x2 + y2 = 4. Start by
drawing the region.

1. Set up two iterated integrals in cylindrical coordinates that would give the
volume of D. For one integral use the order dzdrdθ. For the other, use
the order dθdrdz.

2. Set up an iterated integral in spherical coordinates that would give the
volume of D.

Problem 12.13 The integral

∫ π

0

∫ 1

0

∫ √4−r2

√
3r

rdzdrdθ represents the volume

of solid domain D in space. Set up integrals in both rectangular coordinates
and spherical coordinates that would give the volume of the exact same region.

Problem 12.14 The temperature at each point in space of a solid occupying
the region D, which is the upper portion of the ball of radius 4 centered at the
origin, is given by T (x, y, z) = sin(xy + z). Set up an iterated integral formula
that would give the average temperature.

https://sagecell.sagemath.org/?z=eJytjkEOgjAQRfecojvaMBKsYIxhOEpNFaNNgDZItO3pRaguSExcuJo_8_Jf5i57Gltw4GMW9eeL0h02sj3WkkzXPfElWsETJziRXU18hdkcBP-Q0OSLaqAV5lMjrCWut5FB1ZpGndRwMI0eNjUNFEcK1MKqgIIBde_gIYOcQXhxHqCNHA0Os3THIpN8d-Z_U_qXLnh_lfKFNb1d9YOyJ0VbdCM
https://sagecell.sagemath.org/?z=eJxty00OgyAQQOF9L-IQB6PSnxUnMWqImpTEBgqTFji900V35m3e5vuYAFXCjKUSF6_ty-92sTT73ZFaoWgd34EgTX2dp14gJJQKFU_-T8EWr4J1fcbvkq1ke0675oaPH27i033BRL8tNAdD1umhQ24UB9CiL84
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12.3 The Divergence Theorem

In definition 10.E on page 117, we defined the divergence, or flux density, of a
vector field ~F at a point P to be the flux per unit area, and then stated that
div(~F ) = Mx +Ny. We now extend this to 3D.

In 3D, the flux of ~F across S,
∫∫
S
~F ·~ndσ, is a measure of flow across S where

~n is a continuous unit normal vector to S. Flux density at (x, y, z) is found by
creating a sphere Sa of radius a centered at (x, y, z) with interior volume Va
and outward normal vector ~n, and considering the quotient of flux per volume

given by 1
Va

∫∫
Sa
~F · ~ndσ. By computing lim

a→0

1

Va

∫∫
Sa

~F · ~ndσ, we obtain the

divergence of ~F at (x, y, z), also called the flux density. In a future mathematics
course, we could prove that the divergence equals

div~F (x, y, z) = ~∇ · ~F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (M,N,P )

=
∂M

∂x
+
∂N

∂y
+
∂P

∂z
= Mx +Ny + Pz.

Theorem 12.A (Divergence Theorem). Let S be a closed surface whose interior
is the solid domain D. Let ~n be an outward pointing unit normal vector to S.
Suppose that ~F (x, y, z) is a continuously differentiable vector field on some open

region that contains D. Then the outward flux of ~F across S can be computed
by adding up, along the entire solid D, the flux per unit volume (divergence).
Symbolically, the divergence theorem states∫∫

S

~F · ~ndσ =

∫∫∫
D

~∇ · ~FdV =

∫∫∫
D

(Mx +Ny + Pz) dV

for S a closed surface with interior D and outward normal ~n.

Problem 12.15 Let S be the surface of the wedge in the first octant

bounded by the planes x = 1 and
y

2
+
z

3
= 1. Let ~F be the vector field〈

x+ 3y2, y2 − 4x, 2z + xy
〉
. Use the divergence theorem to compute the out-

ward flux of ~F across S. Make sure you draw the wedge (you may find centroids
and volume help complete this problem rapidly).

Problem 12.16 Consider the vector field ~F = 〈yz,−xz, 3xz〉. Let D be the
solid region in space inside the cylinder of radius 4, above the plane z = 0, and
below the paraboloid z = x2 + y2. The surface S consists of 3 portions, so com-
puting the flux would require a rather time consuming process of parameterizing
these 3 surfaces. Instead, use the divergence theorem to compute the outward
flux of ~F across the surface S.
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