Which of the following sets are vector spaces (i.e., spans)? Do the following for each set below:

- Write 3 elements of the set (if possible)
- If the set is a vector space, write the set as a span of some vectors in the space (i.e., “parametrize” the set).
- If the set is not a vector space, give a specific example showing that the set is not closed under vector addition or not closed under scalar multiplication.

1. “vector” is a matrix

 (a) All matrices with 3 rows and 2 columns (i.e., all 3×2 matrices)
 (b) All 3×3 matrices where every entry not on the diagonal is zero
 (c) All 3×3 matrices where every entry below the diagonal is zero
 (d) All 3×3 matrices that are symmetric (ask me what this means)
 (e) All 3×3 matrices that have an RREF of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 (f) All 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a + d = 0$
 (g) All 2×2 matrices $\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ where $a + b + c = 0$
 (h) The single 2×2 zero matrix

2. “vector” is a polynomial

 (a) All polynomials with degree at most 2
 (b) All polynomials with degree exactly 2
 (c) All polynomials with degree at most 3 and having integer coefficients
 (d) All polynomials with the form $\{a + ct^2 \mid a, c \in \mathbb{R}\}$
 (e) All polynomials of the form $a + bt + ct^2$ where $a + c = 5$.
 (f) All polynomials with degree at least 2
 (g) All polynomials (with any degree)

3. “vector” is a real function (takes in one number, gives back one number)

 (a) All real functions where $f(0) = 0$
 (b) All real differentiable functions where $f'(0) = 1$
 (c) The single function $f(x) = 0$