Name: ________________________________

1. What is the angle between $(1, -3)$ and $(9, 3)$?

2. Give a unit vector that points in the same direction as $(-1, 3, 3)$.

3. Let $B = \{(1, -1), (4, -5)\}$ be a basis for \mathbb{R}^2, and let $\vec{x} = (2, 1)$. Find the coordinate vector $[\vec{x}]_B$, the coordinate vector of \vec{x} relative to B.
4. Let A, B, C, and D be invertible $n \times n$ matrices for which $A = CD^{-1}B^{-1}$. Solve this equation for B.

5. Suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the given reduced row-echelon form. Solve the system (give all solutions) if it is consistent or tell what is wrong if the system is not consistent.

\[
\begin{bmatrix}
1 & 2 & 0 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

6. Is the set \{ $x^2 + 2x + 1$, $-x^2 - 2$, $2x^2 + x - x$, $-x^2 + 3x + 1$ \} a linearly independent set in the vector space $P_2(x)$? Justify your answer.
7. Set up a matrix equation $A\vec{u} = \vec{b}$ whose solution \vec{u} gives the coefficients u_0, u_1, u_2 for the parabola $y = u_0 + u_1x + u_2x^2$ that passes through the points $(1, 2), (2, -1), (3, 3)$. You do not need to solve this system.

8. Let A be an $n \times n$ matrix. Let S be the set of all vectors \vec{v} in \mathbb{R}^n such that $A\vec{v} = -\vec{v}$. Either show that S is a vector subspace of \mathbb{R}^n or give a reason why S is not a subspace. Justify your answer completely.
9. For this page and the next page, consider the following matrix

\[
M = \begin{bmatrix}
-2 & 0 & 0 \\
-1 & -3 & -1 \\
2 & 2 & 0
\end{bmatrix}
\]

(a) Is \(M \) symmetric?

(b) What are the eigenvalues of \(M \)? (Hint: don’t multiply the characteristic polynomial out; factor as much as you can as soon as you can.)

(c) For each eigenvalue above, give a basis for the eigenspace associated with that eigenvalue. Clearly indicate which basis goes with which eigenvalue.

(d) For each eigenvalue of \(M \), give the algebraic and geometric multiplicity of the eigenvalue and justify your answers.
(e) Is M diagonalizable? If so, then write down the factorization of M given by its similarity to a diagonal matrix and explicitly give P and D (you don’t have to compute P^{-1}). If not, tell why M is not diagonalizable.

(f) Is M invertible? Justify your answer by explicitly computing some quantity about M and give a short explanation why the quantity justifies your answer. You do not need to compute M^{-1} to answer this question.
10. Define the linear transformation $T: P_2 \to \mathbb{R}^3$ by $T(p) = \begin{bmatrix} p(-2) \\ p(0) \\ p(2) \end{bmatrix}$, where $p(a)$ is the number found by evaluating the polynomial $p(t)$ at $t = a$.

(a) Find the image of $p(t) = 2 + 3t$.

(b) Find the matrix $[T]_{B,E}$ for T relative to the basis $B = \{1, 2t + 1, t^2 - t\}$ for P_2 and the standard basis for \mathbb{R}^3.

(c) Is T bijective? Completely justify your answer.
11. The row reduced echelon form of
\[
A = \begin{bmatrix}
-1 & 3 & -5 & 4 & 18 \\
1 & -2 & 4 & 0 & -7 \\
2 & 0 & 4 & -3 & -8 \\
5 & 1 & 9 & 2 & 2
\end{bmatrix}
\]
is
\[
\begin{bmatrix}
1 & 0 & 2 & 0 & -1 \\
0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\].

(a) Find a basis for the row space of \(A \).

(b) Find a basis for the column space of \(A \).

(c) Find the rank of \(A \). As always, justify your answer.