Name:

Exam 1 — Math 50 — Spring 2010

Write the best answer to each question in the box provided. For multiple choice and true/false questions, put your answer in the blank next to the question number.

No calculators. No notes.

1 (4 pts) What is $\lim_{x \to 3} x^2 - 2x + 1$?			
	(a) 0	(e) 4	
	(b) 1 (c) 2 (d) 3	(f) 5	
		(g) None of the above	
2.	2. (4 pts) If $\lim_{x\to 0^-} f(x) = 3$, $\lim_{x\to 0^+} f(x) = 3$, and $f(0) = 2$, then what is		
$\lim_{x \to 0} f(x)?$			
	(a) 0	(d) Does not exist.	
	(b) 2	(e) There is not enough information	
	(c) 3	to give an answer.	
3.	. (4 pts) If $\lim_{x \to c} f(x) = 0$ and $\lim_{x \to c} g(x) = 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)} =$		
	(a) 0	(e) Does not exist.	
	(b) 1		
	(c) ∞	(f) There is not enough information	
	(d) $\frac{0}{0}$	to give an answer.	

4. Calculate the limits. If the limit does not exist, but is ∞ or $-\infty$, write " ∞ " or " $-\infty$ " as your answer, respectively; otherwise, write "DNE" for "does not exist". (4pts each)

(a)
$$\lim_{x \to 3} \frac{2x-5}{x+3}$$

(b) $\lim_{x \to 0} x \csc x$

(c)
$$\lim_{x \to 1} \frac{x}{\sin\left(\frac{\pi}{2}x\right)}$$

(d)
$$\lim_{x \to 4} \begin{cases} (x-5)^3 & x \ge 4\\ x+7 & x < 4 \end{cases}$$

(e)
$$\lim_{x \to 2^+} \sqrt{x^2 - 4}$$

(f)
$$\lim_{x \to 0^+} \frac{\ln(3x)}{x}$$

(g)
$$\lim_{x \to 0} \frac{\sin^2 3x}{2x^2}$$

(h)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

(i)
$$\lim_{x \to 0} \frac{\tan(3x)}{x^2}$$

(j)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

- 5. (8 pts) Sketch a graph with the following characteristics. On the graph, label each discontinuity with its type (i.e., removable, jump, or infinite).
 - (a) f(0) is undefined
 - (b) $\lim_{x \to 0^+} f(x) = 3$
 - (c) $\lim_{x \to 0^{-}} f(x) = 2$

- (d) $\lim_{x \to 1} f(x) = \infty$
- (e) f has a removable discontinuity at x = -1

6. Let
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
.
(a) (2pts) What is $f(0)$?

(b) (4pts) What is $\lim_{x\to 0} f(x)$? Explain your answer.

(c) (2pts) Is f(x) continuous at x = 0?

7. (4pts) State the definition of what it means for a function f(x) to be continuous at a point x = c.

8. Let
$$f(x) = \frac{(x+1)^2(2x)}{(x+2)(x)(x-1)}$$
.

(a) (12 pts) Calculate the limits. If the limit does not exist, but is ∞ or $-\infty$, write that as your answer; otherwise, write "DNE" for "does not exist". (1pt each)

(b) (6 pts) For what values of x is f(x) discontinuous? Label each discontinuity with its type (removable, jump, or infinite).

(c) (4 pts) Give a rough sketch of f(x). Label any vertical asymptotes.

